检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]石河子大学机械电气工程学院,石河子832003
出 处:《农业工程学报》2011年第6期182-186,I0002,共6页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家自然基金(40701128;41001020);国家科技支撑计划(2007BAH12B04)
摘 要:为了进一步提高棉花遥感识别精度,以新疆玛纳斯县为研究区,运用线性光谱混合模型(LSMM),对TM遥感数据的混合像元分解技术与方法进行了研究。将棉花、玉米、番茄和土壤4类典型的端元组分光谱值代入线性模型,在非约束条件下,用最小二乘法估计混合系数,得到每种地物类型的丰度及RMS误差图,以实地测量的棉花种植面积对模型分解效果进行评估,结果表明:线性光谱混合模型构模简单、计算量小,棉花线性光谱混合像元分解精度达到90%以上,可用于新疆棉花的遥感识别。In order to improve cotton identifying accuracy,taking Manas county in Xinjiang province as study area,the linear spectral mixture model (LSMM) was applied to the study of pixel unmixing technique based on TM remote sensing data.Four typical endmember spectrum values were put into the linear model,including spectrums of cotton,corn,tomato and soil.Under unconstrained condition,the mixed coefficient was derived by the least square method,together with the abundance of each surface feature and RMS error chart.The results of pixel unmixing were tested with ground measurement of the cotton field in the study area,which showed that the LSMM modeling was simple with less calculation,and the precision of the decomposition of mixed pixels exceeded 90% that's enough for cotton identification with remote sensing data in Xinjiang province.
关 键 词:遥感 像元 棉花 线性光谱混合模型 端元丰度 非约束条件 棉花遥感识别
分 类 号:S127[农业科学—农业基础科学] TP75[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28