检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhong Gen SU
机构地区:[1]Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China
出 处:《Acta Mathematica Sinica,English Series》2011年第8期1573-1580,共8页数学学报(英文版)
基 金:Supported by National Natural Science Foundation of China (Grant No. 10671176) and Natural Science Foun- dation of Zhejiang Province (Grant No. J20091364)
摘 要:Let π be a minimal ErdSs-Szekeres permutation of 1, 2,..., n^2, and let ln,k be the length of the longest increasing subsequence in the segment (πr(1),...,π(k)). Under uniform measure we establish an exponentially decaying bound of the upper tail probability for ln,k, and as a consequence we obtain a complete convergence, which is an improvement of Romik's recent result. We also give a precise lower exponential tail for ln,k.Let π be a minimal ErdSs-Szekeres permutation of 1, 2,..., n^2, and let ln,k be the length of the longest increasing subsequence in the segment (πr(1),...,π(k)). Under uniform measure we establish an exponentially decaying bound of the upper tail probability for ln,k, and as a consequence we obtain a complete convergence, which is an improvement of Romik's recent result. We also give a precise lower exponential tail for ln,k.
关 键 词:Large deviation minimal Erd6s-Szekeres permutation Robinson-Schensted-Knuth cor- respondence Young tableaux
分 类 号:O211.5[理学—概率论与数理统计] O157[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38