检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学系统工程研究所
出 处:《系统工程学报》1990年第1期50-63,共14页Journal of Systems Engineering
摘 要:在大系统稳态递阶优化与控制中,关联平衡法(IBM)是十分重要的方法。但有许多实际问题不能直接应用IBM。本文提出一种新的目标凸化方法——序列凸化技术(SCM),它可以对大部分不能应用IBM的问题进行凸化,使凸化后的问题可以用IBM来求解。与增广Lagrangian方法不同,SCM在凸化中保持了目标可分性,从而给分解带来很大的方便。本文证明了SCM的收敛性,给出了收敛速度的估界。并指出,对于具有凸目标(不必严格凸)的问题来说,SCM的收敛比可任意调节。In the hierarchical optimization and control of large scale steady-state systems, the Interaction Balance Method (IBM) is of great importance. Unfortunately, however, many practical problems cannot be solved directly with IBM. This paper introduces a new objective-convexifying techinique Sequential Convexifying Method (SCM), which turns most of IBM unsolvable problems into solvable ones. Being different from the Augmented Lagrangian Method, SCM maintains the separability of the objective in the convexification, which has eased the task of decomposition significantly. The main idea of SCM is to approximate the original problem by a sequence of convex programming problems, the limit of the solution sequence approaches to the optimum solution of the original problem. A convergence proof of SCM as well as the estimation of the convergence rate is presented, and it is indicated that the convergence ratio of SCM can be made arbitrarily small in the case of convex problem (of course, strictly convex is not necessary).
分 类 号:TP11[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.226