Feature selection algorithm for text classification based on improved mutual information  被引量:1

Feature selection algorithm for text classification based on improved mutual information

在线阅读下载全文

作  者:丛帅 张积宾 徐志明 王宇颖 

机构地区:[1]School of Computer Science and Technology,Harbin Institute of Technology

出  处:《Journal of Harbin Institute of Technology(New Series)》2011年第3期144-148,共5页哈尔滨工业大学学报(英文版)

基  金:Sponsored by the National Nature Science Foundation Projects (Grant No. 60773070,60736044)

摘  要:In order to solve the poor performance in text classification when using traditional formula of mutual information (MI) , a feature selection algorithm were proposed based on improved mutual information. The improved mutual information algorithm, which is on the basis of traditional improved mutual information methods that enbance the MI value of negative characteristics and feature' s frequency, supports the concept of concentration degree and dispersion degree. In accordance with the concept of concentration degree and dispersion degree, formulas which embody concentration degree and dispersion degree were constructed and the improved mutual information was implemented based on these. In this paper, the feature selection algorithm was applied based on improved mutual information to a text classifier based on Biomimetic Pattern Recognition and it was compared with several other feature selection methods. The experimental results showed that the improved mutu- al information feature selection method greatly enhances the performance compared with traditional mutual information feature selection methods and the performance is better than that of information gain. Through the introduction of the concept of concentration degree and dispersion degree, the improved mutual information feature selection method greatly improves the performance of text classification system.In order to solve the poor performance in text classification when using traditional formula of mutual information (MI),a feature selection algorithm were proposed based on improved mutual information.The improved mutual information algorithm,which is on the basis of traditional improved mutual information methods that enhance the MI value of negative characteristics and feature's frequency,supports the concept of concentration degree and dispersion degree.In accordance with the concept of concentration degree and dispersion degree,formulas which embody concentration degree and dispersion degree were constructed and the improved mutual information was implemented based on these.In this paper,the feature selection algorithm was applied based on improved mutual information to a text classifier based on Biomimetic Pattern Recognition and it was compared with several other feature selection methods.The experimental results showed that the improved mutual information feature selection method greatly enhances the performance compared with traditional mutual information feature selection methods and the performance is better than that of information gain.Through the introduction of the concept of concentration degree and dispersion degree,the improved mutual information feature selection method greatly improves the performance of text classification system.

关 键 词:text classification feature selection improved mutual information: Biomimetie Pattern Recognition 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象