检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009
出 处:《合肥工业大学学报(自然科学版)》2011年第7期1011-1014,共4页Journal of Hefei University of Technology:Natural Science
基 金:国家自然科学基金资助项目(60705015)
摘 要:文章分析了视频中雨的时空特性和色度特性,并基于这2个特性,提出了一种简单而有效的利用序列图片检测和去除视频中雨的方法。首先优化了K均值的时间复杂度,然后依据雨的时空特性,运用改进的K均值方法对各个像素进行聚类操作;依据雨的色度特性准确区分出雨区,从而成功地完成了检测;利用统计特性对背景像素值进行估计,代替雨的像素值。为了得到更加清晰的复原结果,融合了检测之前的预处理和去雨后的非雨区滤波处理,形成了一套完整的雨景图像复原方法。实验结果表明,该方法是简单而且有效的。In this paper,the spatio-temporal property and the chromatic property of rain in the video are analyzed.Based on the two properties,a simple and effective algorithm is proposed to detect and remove the rain in the video by using sequential image.Firstly the time complexity of K-means is optimized by the algorithm.Then each pixel is classified by the optimized K-means according to the spatio-temporal property of rain and the rain parts are identified accurately according to the chromatic property of rain for the rain detection.For the rain removal,the color of streak is replaced by the proportion-blending color of the rain's color and the background's color based on the statistic characteristics.And for achieving a clearer restoration result,the original images are preprocessed before the detection and filtering is carried out for the no-rain parts after rain removal.Experimental results prove that the proposed algorithm is simple and effective.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63