基于主元分析的多传感器故障检测  被引量:6

Fault Detection for Multi-Sensor Based on PCA

在线阅读下载全文

作  者:杜海莲[1] 王占锋[2] 吕锋[1] 杜文霞[1] 

机构地区:[1]河北师范大学电子系,石家庄050016 [2]石家庄经济学院信息工程学院,石家庄050031

出  处:《南京航空航天大学学报》2011年第B07期138-141,共4页Journal of Nanjing University of Aeronautics & Astronautics

基  金:国家自然科学基金(60974063)资助项目;河北省教育厅(2006439)资助项目

摘  要:针对动态系统的压力、温度、流量等传感器数据,给出了一种基于主元分析法的传感器故障检测与诊断方法。该方法能够在对测量参数相关性分析的基础上,将传感器测量值所组成的测量空间分解为主元和残差两个子空间,通过传感器实际测量数据与正常数据矩阵在残差子空间投影的比较,对传感器的故障进行检测与诊断。通过双容水箱被控系统的传感器进行检测,结果表明主元分析法对传感器具有很好的故障检测和故障诊断能力。A sensor fault detection and diagnosis method is presented using principal component analysis (PCA) for pressure, temperature and flux data of dynamic system. The method divides the measure space into two subspaces: principal component subspace (PCS) and residual subspace (RS) based on the correlation analysis of measure data. It can detect and diagnose sensor faults by comparing the projections in RS of actual sensors measurement and normal data matrix. Examples of using PCA for fault detection and diagnosis of the four types of sensor faults in double water tanks are given, which are based on fault simulation. The results show that the PCA approach has good performance in the fault detection and diagnosis of sensors.

关 键 词:故障检测 主元分析 传感器 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象