检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中北大学机械工程与自动化学院,山西太原030051
出 处:《电子测试》2011年第6期8-11,共4页Electronic Test
基 金:山西省自然科学基金(2010011031-1)
摘 要:针对BP神经网络存在的固有缺陷:收敛速度慢,容易陷入局部极小,文中对所建BP网络的学习算法进行了改进,采用附加动量项和自适应调整学习率的BP算法对网络进行训练,替代标准BP算法中的梯度下降法寻找最优网络连接权值。仿真实验证明,这种学习算法提高了BP网络的学习效率及稳定性,大大提高了网络的收敛速度,更好地实现了对模拟电路的故障诊断。For the inherent shortcomings of BP neural network:slow convergence and easy to fall into local minimum,in this paper the learning algorithm of established network is improved.Replacing the gradient descent method of the standard BP algorithm,the network is trained by additional momentum term and adaptive learning rate BP algorithm to find the optimal network connection weights.Simulation results show that this learning algorithm improves the learning efficiency and stability of BP network and accelerates the convergence speed of the network,and better realizes the fault diagnosis of analog circuits.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200