SOME RESULTS ON PRODUCT COMPLEX FINSLER MANIFOLDS  被引量:4

SOME RESULTS ON PRODUCT COMPLEX FINSLER MANIFOLDS

在线阅读下载全文

作  者:吴志成 钟春平 

机构地区:[1]School of Mathematical Sciences, Xiamen University

出  处:《Acta Mathematica Scientia》2011年第4期1541-1552,共12页数学物理学报(B辑英文版)

基  金:supported by Program for New Century Excellent Talents in Fujian Provincial University;the Natural Science Foundation of China (10971170; 10601040)

摘  要:Let (M, F ) be the product complex Finsler manifold of two strongly pseudoconvex complex Finsler manifolds (M 1 , F 1 ) and (M 2 , F 2 ). In this paper, we obtain the relationship between the Chern Finsler connection coefficients Γ i ; k associated to F and the Chern Finsler connection coefficients Γ a ; c , Γα ; γ associated to F 1 , F 2 , respectively. As applications we prove that, if both (M 1 , F 1 ) and (M 2 , F 2 ) are strongly Ka¨hler Finsler (complex Berwald, or locally complex Minkowski, respectively) manifolds, so does (M, F ). Furthermore, we prove that the holomorphic curvature K F = 0 if and only if K F1 = 0 and K F2 = 0.Let (M, F ) be the product complex Finsler manifold of two strongly pseudoconvex complex Finsler manifolds (M 1 , F 1 ) and (M 2 , F 2 ). In this paper, we obtain the relationship between the Chern Finsler connection coefficients Γ i ; k associated to F and the Chern Finsler connection coefficients Γ a ; c , Γα ; γ associated to F 1 , F 2 , respectively. As applications we prove that, if both (M 1 , F 1 ) and (M 2 , F 2 ) are strongly Ka¨hler Finsler (complex Berwald, or locally complex Minkowski, respectively) manifolds, so does (M, F ). Furthermore, we prove that the holomorphic curvature K F = 0 if and only if K F1 = 0 and K F2 = 0.

关 键 词:complex Finsler manifold product manifold holomorphic curvature 

分 类 号:O174.6[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象