检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematical Sciences, Xiamen University
出 处:《Acta Mathematica Scientia》2011年第4期1541-1552,共12页数学物理学报(B辑英文版)
基 金:supported by Program for New Century Excellent Talents in Fujian Provincial University;the Natural Science Foundation of China (10971170; 10601040)
摘 要:Let (M, F ) be the product complex Finsler manifold of two strongly pseudoconvex complex Finsler manifolds (M 1 , F 1 ) and (M 2 , F 2 ). In this paper, we obtain the relationship between the Chern Finsler connection coefficients Γ i ; k associated to F and the Chern Finsler connection coefficients Γ a ; c , Γα ; γ associated to F 1 , F 2 , respectively. As applications we prove that, if both (M 1 , F 1 ) and (M 2 , F 2 ) are strongly Ka¨hler Finsler (complex Berwald, or locally complex Minkowski, respectively) manifolds, so does (M, F ). Furthermore, we prove that the holomorphic curvature K F = 0 if and only if K F1 = 0 and K F2 = 0.Let (M, F ) be the product complex Finsler manifold of two strongly pseudoconvex complex Finsler manifolds (M 1 , F 1 ) and (M 2 , F 2 ). In this paper, we obtain the relationship between the Chern Finsler connection coefficients Γ i ; k associated to F and the Chern Finsler connection coefficients Γ a ; c , Γα ; γ associated to F 1 , F 2 , respectively. As applications we prove that, if both (M 1 , F 1 ) and (M 2 , F 2 ) are strongly Ka¨hler Finsler (complex Berwald, or locally complex Minkowski, respectively) manifolds, so does (M, F ). Furthermore, we prove that the holomorphic curvature K F = 0 if and only if K F1 = 0 and K F2 = 0.
关 键 词:complex Finsler manifold product manifold holomorphic curvature
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147