基于“9点3面”配准方案的CT+MR异机三维图像融合研究  

3D-image fusion research of cross CT+MR modality based on localization registration approach of "9-point & 3-plane"

在线阅读下载全文

作  者:彭鳒侨[1] 鞠向阳 白波[1] 刘琦[1] 陈艺[1] 莫建文[1] 朱巧洪[3] 李新春[3] 

机构地区:[1]广州医学院第一附属医院关节外科广东省矫形植入骨科重点实验室,广州510120 [2]英国Glasgow大学生物物理工程部 [3]广州医学院第一附属医院放射科,广州510120

出  处:《中国临床解剖学杂志》2011年第4期418-422,共5页Chinese Journal of Clinical Anatomy

基  金:广州医学院2009年度留学回国人员;博士专项基金

摘  要:目的尝试一种基于体表定位的二维图像配准方法,实现CT和MR异机三维图像的精确融合。方法输入CT/MR原始数据后采用数字化格式转换,设计"9点3面"立体对位法进行配准,在实时工作站Mimics按照信息交互自动融合模式,通过讯号叠加技术完成图像融合。结果以患者的头、膝为实例试验[CT+MR]立体图像的异机融合,生成了同时展现头部软硬组织、膝部病变性质和位置的互补影像,携带着来自CT和MR各自的讯号特征和医学信息,既能了解MR所发现的异常组织的明确位置,又能鉴别CT所发现的异常病灶的性质。结论这种异机融合手段是对目前这一空缺技术的补充,同时,这一实验也将为进一步研制[CT+MR]同机三维融合设备提供经验借鉴。Objective To attempt a localization registration approach of 2-Dimension (2D) images based on somatotopic localization to realize accurate fusion from cross modality of 3-Dimension (3D) CT & MR images. Methods To fix digital format after original data of CT/MR input, design cubic localization solution of "9-point & 3-plane"for registration, complete fusion at real-time workstation Mimics based on auto-fusing style of information exchanged by signal overlaid technique. Results The fused cubic images of cross [CT+MR] modality were mutually practiced by patients' cranium and knee samples, while complementary images of distinguishing soft and hard tissue in cranium and knee were created, which carrying signal characteristic and medical information respectively from CT & MR individually, and were helpful not only to learn specific location of abnormal organs found out by MR, but also to identify focal nature of abnormal lesions found out by CT. Conclusions This cross modality fusion scheme is a supplement for the technique vacant at present, meanwhile, this experiment will also provide experience drawn on invention of [CT+MR] single modality equipment of 3D imaging in advance.

关 键 词:正电成像/核磁共振/计算机断层造影术 三维重建 定位配准 异机图像融合 

分 类 号:R814[医药卫生—影像医学与核医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象