机构地区:[1]College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China [2]School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
出 处:《Journal of Environmental Sciences》2011年第7期1143-1149,共7页环境科学学报(英文版)
基 金:sponsored by Hong Kong Jockey Club Charities Trust, Castle Peak Power Co. Ltd., the Environ- mental Protection Department of the Hong Kong Special Administrative Region and the Shell Hong Kong Ltd. through Civic Exchange
摘 要:PM 2.5 samples were collected in a regional sampling network with three sites in Hong Kong and four sites in the adjacent inland Pearl River Delta (PRD) or Guangdong Province during four months/seasons from 2002–2003. Trans-boundary transport between Hong Kong and the inland PRD is inevitable under the influence of Asian monsoon. In summer, Hong Kong serves as the upwind site of the inland PRD while during other seasons it is under the influence of continental emissions. Previous studies have recognized the importance of using chemical signatures to differentiate local vs. regional contributions to air pollutants in Hong Kong such as the CO/NOx ratio, ratios of different VOC species. In this study, detailed chemical speciation by gas chromatography-mass spectrometry was performed with PM 2.5 samples to identify new chemical signatures to distinguish aerosols in Hong Kong from those from the inland PRD. Since Hong Kong is not influenced by the continental emissions from the inland PRD during summer, comparison focused on chemical data obtained from this season for chemical signatures. The new ratios developed from the current study include LCPI/HCPI ratio of alkanes (0.39 ± 0.02 in Hong Kong vs. 0.78 ± 0.08 in the inland PRD), pyrene to benzo[ghi]perylene ratio (0.97 ± 0.21 in Hong Kong compared to 0.20 ± 0.06 in the inland PRD), and the ratio of 1,2-benzenedioic acid to 1,4-benzenedioic acid (1.8 ± 0.1 in Hong Kong vs. 0.6 ± 0.05 in the inland PRD). Results from this study also revealed that Hong Kong was impacted by ship emissions as reflected by substantially high V/Ni ratio (9 ± 2) while this ratio was about 1–2 at all sites in the inland PRD, which is very close to typical ratios from residual oil combustion.PM 2.5 samples were collected in a regional sampling network with three sites in Hong Kong and four sites in the adjacent inland Pearl River Delta (PRD) or Guangdong Province during four months/seasons from 2002–2003. Trans-boundary transport between Hong Kong and the inland PRD is inevitable under the influence of Asian monsoon. In summer, Hong Kong serves as the upwind site of the inland PRD while during other seasons it is under the influence of continental emissions. Previous studies have recognized the importance of using chemical signatures to differentiate local vs. regional contributions to air pollutants in Hong Kong such as the CO/NOx ratio, ratios of different VOC species. In this study, detailed chemical speciation by gas chromatography-mass spectrometry was performed with PM 2.5 samples to identify new chemical signatures to distinguish aerosols in Hong Kong from those from the inland PRD. Since Hong Kong is not influenced by the continental emissions from the inland PRD during summer, comparison focused on chemical data obtained from this season for chemical signatures. The new ratios developed from the current study include LCPI/HCPI ratio of alkanes (0.39 ± 0.02 in Hong Kong vs. 0.78 ± 0.08 in the inland PRD), pyrene to benzo[ghi]perylene ratio (0.97 ± 0.21 in Hong Kong compared to 0.20 ± 0.06 in the inland PRD), and the ratio of 1,2-benzenedioic acid to 1,4-benzenedioic acid (1.8 ± 0.1 in Hong Kong vs. 0.6 ± 0.05 in the inland PRD). Results from this study also revealed that Hong Kong was impacted by ship emissions as reflected by substantially high V/Ni ratio (9 ± 2) while this ratio was about 1–2 at all sites in the inland PRD, which is very close to typical ratios from residual oil combustion.
关 键 词:PM 2.5 chemical signature local and regional air pollution Hong Kong Pearl River Delta
分 类 号:X51[环境科学与工程—环境工程] Q959.7[生物学—动物学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...