出 处:《Science China Chemistry》2011年第8期1202-1217,共16页中国科学(化学英文版)
基 金:the National Basic Research Program of China (2010CB732400);the National Natural Science Foundation of China (20821063 & 20875044);the Natural Science Foundation of Jiangsu (BK2008014)
摘 要:The first decade of the 21st century has been labeled as "the sensing decade". The functional nanomaterials offer excellent platforms for fabrication of sensitive biosensing devices, including optical and electronic biosensors. A lot of works have fo- cused on the biofunctionalization of different nanomaterials, such as metal nanoparticles, semiconductor nanoparticles and carbon nanostructures, by physical adsorption, electrostatic binding, specific recognition or covalent coupling. These biofunc- tionalized nanomaterials can be used as catalysts, electronic conductors, optical emitters, carriers or tracers to obtain the ampli- fied detection signal and the stabilized recognition probes or biosensing interface. The designed signal amplification strategies have greatly promoted the development of stable, specific, selective and sensitive biosensors in different fields. This review in- troduces some novel principles and detection strategies in the area of biosensing, based on functional nanomaterials. The gen- eral methods for biofunctionalization of nanomaterials with biomolecules and their biosensing application in immunoassay of protein, DNA detection, carbohydrate analysis and cytosensing are also described.The first decade of the 21st century has been labeled as "the sensing decade". The functional nanomaterials offer excellent platforms for fabrication of sensitive biosensing devices, including optical and electronic biosensors. A lot of works have fo- cused on the biofunctionalization of different nanomaterials, such as metal nanoparticles, semiconductor nanoparticles and carbon nanostructures, by physical adsorption, electrostatic binding, specific recognition or covalent coupling. These biofunc- tionalized nanomaterials can be used as catalysts, electronic conductors, optical emitters, carriers or tracers to obtain the ampli- fied detection signal and the stabilized recognition probes or biosensing interface. The designed signal amplification strategies have greatly promoted the development of stable, specific, selective and sensitive biosensors in different fields. This review introduces some novel principles and detection strategies in the area of biosensing, based on functional nanomaterials. The general methods for biofunctionalization of nanomaterials with biomolecules and their biosensing application in immunoassay of protein, DNA detection, carbohydrate analysis and cytosensing are also described.
关 键 词:nanobiosensing biosensors NANOMATERIALS BIOFUNCTIONALIZATION signal amplification BIOANALYSIS biological recognition
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...