Reservoir history matching and inversion using an iterative ensemble Kalman filter with covariance localization  被引量:5

Reservoir history matching and inversion using an iterative ensemble Kalman filter with covariance localization

在线阅读下载全文

作  者:Wang Yudou Li Maohui 

机构地区:[1]School of Physics Science & Technology, China University of Petroleum, Dongying, Shandong 257061, China

出  处:《Petroleum Science》2011年第3期316-327,共12页石油科学(英文版)

基  金:support from the Shandong Natural Science Foundation(Grant No.ZR2010EM053);the Fundamental Research Funds for the Central Universities(Grant No.10CX04042A)

摘  要:Reservoir inversion by production history matching is an important way to decrease the uncertainty of the reservoir description. Ensemble Kalman filter (EnKF) is a new data assimilation method. There are two problems have to be solved for the standard EnKF. One is the inconsistency between the updated model and the updated dynamical variables for nonlinear problems, another is the filter divergence caused by the small ensemble size. We improved the EnKF to overcome these two problems. We use the half iterative EnKF (HIEnKF) for reservoir inversion by doing history matching. During the H1EnKF process, the prediction data are obtained by rerunning the reservoir simulator using the updated model. This can guarantee that the updated dynamical variables are consistent with the updated model. The updated model can nonlinearly affect the prediction data. It is proved that HIEnKF is similar to the first iteration of the EnRML method. Covariance localization is introduced to alleviate filter divergence and spurious correlations caused by the small ensemble size. By defining the shape and size of the correlation area, spurious correlation between the gridblocks far apart is alleviated. More freedom of the model ensemble is preserved. The results of history matching and inverse problem obtained from the HIEnKF with covariance localization are improved. The results show that the model freedom increases with a decrease in the correlation length. Therefore the production data can be matched better. But too small a correlation length can lose some reservoir information and this would cause big errors in the reservoir model estimation.Reservoir inversion by production history matching is an important way to decrease the uncertainty of the reservoir description. Ensemble Kalman filter (EnKF) is a new data assimilation method. There are two problems have to be solved for the standard EnKF. One is the inconsistency between the updated model and the updated dynamical variables for nonlinear problems, another is the filter divergence caused by the small ensemble size. We improved the EnKF to overcome these two problems. We use the half iterative EnKF (HIEnKF) for reservoir inversion by doing history matching. During the H1EnKF process, the prediction data are obtained by rerunning the reservoir simulator using the updated model. This can guarantee that the updated dynamical variables are consistent with the updated model. The updated model can nonlinearly affect the prediction data. It is proved that HIEnKF is similar to the first iteration of the EnRML method. Covariance localization is introduced to alleviate filter divergence and spurious correlations caused by the small ensemble size. By defining the shape and size of the correlation area, spurious correlation between the gridblocks far apart is alleviated. More freedom of the model ensemble is preserved. The results of history matching and inverse problem obtained from the HIEnKF with covariance localization are improved. The results show that the model freedom increases with a decrease in the correlation length. Therefore the production data can be matched better. But too small a correlation length can lose some reservoir information and this would cause big errors in the reservoir model estimation.

关 键 词:Half iterative ensemble Kalman filter covariance localization reservoir inversion historymatching fluvial channel reservoir 

分 类 号:TP701[自动化与计算机技术—检测技术与自动化装置] TN713[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象