检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔彩岩[1] 涂俊[1] 刘克俭[1] 宋玉娥[1] 张裕曾[1] 李长城[1] 刘晓利[1]
机构地区:[1]华中科技大学同济医学院公共卫生学院,湖北武汉430030
出 处:《工业卫生与职业病》2011年第4期218-220,共3页Industrial Health and Occupational Diseases
基 金:国家自然科学基金资助项目(30671742;81072255)
摘 要:目的建立氟性骨损伤人工神经网络模型,预测氟性骨损伤发生的危险性。方法选择氟接触工人的年龄、工龄、车间、饮酒史、降钙素受体(CTR)基因作为输入层,以是否患氟性骨损伤为输出层,采用Levenberg-Marquardt优化算法训练网络并建立人工神经网络模型,验证网络模型的实用性和可靠性。结果模型的拟合度为99.2%,预测的灵敏度、特异度、准确度、阳性预测值和阴性预测值分别为95.8%、77.3%、87.0%、82.1%和94.4%。结论人工神经网络模型在氟性骨损伤发病风险的预测中取得了较好的效果。Objective To establish an artificial neural network model to predict the risk of occurrence of fluoride bone injury.Methods The variables including age,working-age,workshop,drinking history,and the gene type of calcitonin receptor(CTR)were taken as the input layer,while the fluoride bone injury(yes=1,no=0)was taken as the output layer.The Levenberg-Marquardt optimized calculation method was used to train the network and to establish the model,and finally to testify its practicability and reliability.Results The fitness of the model was 99.2%.The sensitivity,specificity,accuracy,positive and negative predictive values for fluoride bone injury were 95.8%,77.3%,87.0%,82.1% and 94.4% respectively.Conclusions The artificial neural network model achieved good efficiency in predicting the risk of occurrence of fluoride bone injury.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.82.96