检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国农业大学资源与环境学院,北京100193 [2]中国农业大学信息与电气工程学院,北京100193
出 处:《光谱学与光谱分析》2011年第8期2114-2116,共3页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金创新研究群体科学基金项目(30821003);农业公益性行业科研专项经费项目(200803030);国家"十一五"科技支撑计划重点项目(2008BADA4B05)资助
摘 要:近红外分析技术是一种新型、快速、无损的检测技术,是未来农业化学分析检测的发展方向。文章采用近红外分析技术对黄瓜叶片中全氮进行了无损测试。主要结论如下:应用黄瓜叶片的全氮含量测定值(凯氏定氮法)与近红外光谱建立模型,然后进行外部验证,验证结果为:模型的决定系数为0.406 6,相对标准差为0.155 9,校正标准差为0.72;应用验证后的模型预测黄瓜各叶片中的全氮含量,平均绝对误差为0.59,平均相对误差为13.88,化学值与预测值的相关系数为0.637 7,模型具有一定的可行性。Non-destructive testing, as a new, rapid, non-destructive technology, is the direction of agricultural produce testing in the future. In this study, the nitrogen content of cucumber leaves was predetermined using near infrared spectroscopy technol- ogy. The main results were as follows: The authors measured the nitrogen content in cucumber leaves with Kjeldahl method and near infrared spectroscopy, then established a model between them, and processed a external verification next. The verification results showed that the determination coefficient of the model was 0. 406 6, relative standard deviation is 0. 155 9, and calibration standard deviation is 0.72; Then the authors predicted the cucumber leaves nitrogen content with this model, and the results showed that the mean absolute percent error was 0. 59, average relative error was 13.88, and correlation coefficient of the ehemi cal values and predicted values was 0. 637 7. So' it was proved that this model had a certain feasibility in vegetable leaves nitrogen testing.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.186