检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东大学计算机科学与技术学院,济南250101 [2]山东经济学院计算机科学与技术学院,济南250014 [3]山东省数字媒体技术重点实验室,济南250014
出 处:《计算机研究与发展》2011年第7期1246-1254,共9页Journal of Computer Research and Development
基 金:国家自然科学基金项目(60970047;60970048);山东省自然科学基金项目(Y2008G19);山东省科技攻关计划基金项目(2007GG10001002);山东省高等学校科技计划基金项目(J10LG69)
摘 要:提出了一种基于图划分和图像搜索引擎的图像标注改善算法,通过对待标注图像的候选标注词进行去噪处理,提高标注的准确性.算法的核心思想是将候选标注词作为图的顶点,将标注词间的相关度作为边的权值,从而把图像标注改善问题转换为图划分问题.用2个参数对标注词间的相似度进行加权处理后计算出边的权值:参数1是根据图像搜索引擎返回结果计算出的候选标注词与待标注图像视觉特征之间的相关度;参数2是候选标注词在待标注图像所属页面中的重要程度,此参数仅适用于Web图像.然后,用启发式最大割算法对构造出的图进行二划分,最后从划分出的2个顶点集中选择其一作为最终标注.实验结果表明,对比已有方法,使用本算法对非Web图像和Web图像进行标注改善后,最终的标注结果都更加准确.Automatic image annotation has been an active research direction due to its great importance in content-based image retrieval(CBIR). However, the results of existing image annotation methods are still far from practical. Therefore, it is of vital importance to design a high-performance apf)roach which could refine the initial annotations. This paper presents a novel algorithm to solve image annotation refinement problem (IAR) by graph partition and image search engine. Our algorithm focuses on pruning the noisy words in candidate annotation set to enhance image annotation performance. The main idea of the proposed algorithm lies in that candidate annotations are served as graph vertices, and the relevance between two candidate annotations is used to construct the edge weight. Then, the image annotation refinement problem can be converted to the weighted graph partition problem. The edge weight is the annotation similarity weighted by two parameters. Parameter 1 is the relationship between candidate annotation and image visual features, and parameter 2 refers to the importance of candidate annotation in host Web page. Next, we compute max cut of the graph using a heuristic algorithm. After the graph is bi-partitioned, one of the two vertex sets is chosen as final annotations. Experimental results on non-Web images and Web images show that our algorithm outperforms the existing image annotation refinement techniques.
关 键 词:图像标注改善 图划分 Hash编码 海明距离 图像视觉特征
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38