Mapping of QTL Associated with Drought Tolerance in a Semi-Automobile Rain Shelter in Maize (Zea mays L.)  被引量:6

Mapping of QTL Associated with Drought Tolerance in a Semi-Automobile Rain Shelter in Maize (Zea mays L.)

在线阅读下载全文

作  者:ZHU Jing-jing WANG Xiao-peng SUN Cui-xia ZHU Xiu-miao LI Meng ZHANG Guo-dong TIAN Yan-chen WANG Ze-li 

机构地区:[1]National Key Laboratory of Crop Biology, Ministry of Science and Technology/College of Life Sciences, Shandong Agricultural University, Tai'an 271018, P.R.China

出  处:《Agricultural Sciences in China》2011年第7期987-996,共10页中国农业科学(英文版)

基  金:supported by the National Basic Research Program of China (2009CB118400)

摘  要:Drought is a major constraint in maize production worldwide. We studied quantitative trait loci (QTL) underlying drought tolerance for maize plants grown in two different environments. Traits investigated included ASI, plant height, grain yield, ear height, and ear setting. A genetic linkage map was constructed with 120 simple sequence repeat (SSR) markers based on an F2 population derived from a cross between D5 (resistant parent) and 7924 (susceptible parent). Correlation and heritability were calculated. QTLs of these traits were identified by composite interval mapping combined with a linkage map covering 1 790.3 cM. The markers were arranged in ten linkage groups. QTL mapping was made of the mean trait performance of the 180 F2:3 population. The results showed five, five, six, four, and five QTLs for ASI, plant height, grain yield, ear height, and ear setting under full irrigation condition, respectively, and four, seven, six, four, and four QTLs for ASI, plant height, grain yield, ear height, and ear setting under severe late stress conditions, respectively. Especially the four QTLs detected for five traits in 2008 and 2009. The universal QTLs information generated in this study will aid in undertaking an integrated breeding strategy for further genetic studies in drought tolerance improvement in maize.Drought is a major constraint in maize production worldwide. We studied quantitative trait loci (QTL) underlying drought tolerance for maize plants grown in two different environments. Traits investigated included ASI, plant height, grain yield, ear height, and ear setting. A genetic linkage map was constructed with 120 simple sequence repeat (SSR) markers based on an F2 population derived from a cross between D5 (resistant parent) and 7924 (susceptible parent). Correlation and heritability were calculated. QTLs of these traits were identified by composite interval mapping combined with a linkage map covering 1 790.3 cM. The markers were arranged in ten linkage groups. QTL mapping was made of the mean trait performance of the 180 F2:3 population. The results showed five, five, six, four, and five QTLs for ASI, plant height, grain yield, ear height, and ear setting under full irrigation condition, respectively, and four, seven, six, four, and four QTLs for ASI, plant height, grain yield, ear height, and ear setting under severe late stress conditions, respectively. Especially the four QTLs detected for five traits in 2008 and 2009. The universal QTLs information generated in this study will aid in undertaking an integrated breeding strategy for further genetic studies in drought tolerance improvement in maize.

关 键 词:MAIZE drought tolerance simple sequence repeat quantitative trait loci 

分 类 号:S828.2[农业科学—畜牧学] S513[农业科学—畜牧兽医]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象