在非高斯状态空间模型下对SCD模型的估计  

在线阅读下载全文

作  者:靳珊[1] 黄荣坦[2] 

机构地区:[1]集美大学理学院,福建厦门361006 [2]厦门大学数学科学学院,福建厦门361021

出  处:《统计与决策》2011年第15期17-21,共5页Statistics & Decision

摘  要:高频超高频时间序列的分析与建模成已为计量经济的一个全新研究领域,而研究金融市场中交易事件到达时间的随机条件持续期SCD模型,因为加入了随机变量,可以更好地拟合高频超高频金融时间序列特有的统计特征,但随机变量的引入给模型估计带来了估计困难。考虑到非高斯状态空间模型与随机条件持续期SCD模型各自的优势,文章将SCD模型转换成非高斯状态空间模型,从而利用非高斯状态空间框架下的Kalman滤波解决了SCD模型的估计难题。

关 键 词:状态空间 非高斯 SCD模型 

分 类 号:O212.7[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象