检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学海岸与近海工程国家重点实验室,辽宁大连116024 [2]浙江大学建筑工程学院,浙江杭州310058
出 处:《工程力学》2011年第8期9-16,共8页Engineering Mechanics
基 金:国家自然科学基金重点项目(50438010);南水北调工程建设重大关键技术研究及应用项目(JGZXJJ2006-13)
摘 要:该文依据弯矩.面积方法给出了弯曲变形计算的理论闭合解,结合所完成的不同厚度超高韧性水泥基复合材料试件的四点弯曲试验结果,计算了弯矩.曲率曲线、荷载.挠度曲线,通过与挠度简化计算公式及试验结果对比分析了理论公式的可行性。结果表明:基于闭合解得到的结果与试验实测值吻合最好,最大误差不超过5%,且试件厚度对变形计算基本没有影响;而基于简化公式计算的变形与实测值相差很大,最大误差达30%~50%。因此,对于有着拉伸应变硬化性能的材料,弯曲变形理论闭合解可以作为其变形计算的合理公式,并为拉伸性能反预测作准备。The paper presents theoretical closed-solution to flexural deformation based on the moment-area method. The moment-curvature curve and load-deflection curve are calculated, and the feasibility of the theoretical closed-solution is further evaluated through a comparison between the results obtained by the simplified equation and the experimental measurements from four-point bending tests on specimens made of ultrahigh toughness cementitious composite. The comparison analysis shows that the results obtained based on closed-solution agree well with the test data with the maximum error of 5%, whereas the result by the simplified equation has significant errors, as high as 30%-50%. The analysis also shows that there is no influence of depth on the calculated deflection based on closed-solution. Therefore, for the tension strain hardening material, the closed solution to flexural deformation is more reasonable and can be regarded as a prediction approach for the inverse evaluation of tension property.
关 键 词:拉伸应变硬化 超高韧性水泥基复合材料 弯曲变形性能 闭合解 试件厚度
分 类 号:TU528.57[建筑科学—建筑技术科学] TU318
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42