基于BEMD和PCA的数字图像压缩  被引量:6

Digital image compression based on BEMD and PCA

在线阅读下载全文

作  者:蔡碧野[1] 向军[1] 

机构地区:[1]长沙理工大学计算机与通信工程学院,长沙410114

出  处:《计算机工程与应用》2011年第23期185-187,共3页Computer Engineering and Applications

基  金:湖南省自然科学基金No.09JJ3120;长沙市科技计划重点项目(No.k0904028-11);湖南省教育厅科学研究项目(No.07C083,No.08C103)~~

摘  要:二维经验模式分解(BEMD)方法是一种不依懒于基函数的数据驱动的自适应方法,主成分分析(PCA)算法具有去相关性好、压缩比高等特点。因此尝试运用BEMD算法对图像进行分解,利用PCA算法对分解后的子图像进行压缩。通过Matlab仿真,证明了该方法的有效性和优越性,且基本实现了高压缩比下达到高信噪比的目的。Binary Empirical Mode Decomposition(BEMD) is a kind of adaptive method of data-driven,which is primary function dependent.Principle Component Analysis algorithm has an excellent performance in decorrelation and high compression ratio.Therefore,in this paper,a new method for compressing is proposed,which is implemented by first decomposing the original image through BEMD and then using the PCA algorithm to compress the decomposed subimages.By simulating on the Matlab,the validity and the superiority of this method are proved,and basically achieve the goal of a high signal to noise ratio under a high compression ratio.

关 键 词:二维经验模式分解 主成分分析 峰值信噪比 数字图像压缩 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象