Electrochemical behaviour of erbium and preparation of Mg-Li-Er alloys by codeposition  被引量:3

Electrochemical behaviour of erbium and preparation of Mg-Li-Er alloys by codeposition

在线阅读下载全文

作  者:曹鹏 张密林 韩伟 颜永得 魏树权 郑涛 

机构地区:[1]Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University

出  处:《Journal of Rare Earths》2011年第8期763-767,共5页稀土学报(英文版)

基  金:Project supported by by the Fundamental Research funds for the Central Universities (HEUCF101002);the National Natural Science Foundation of China (50871033)

摘  要:The electrodeposition of erbium on molybdenum electrodes and the formation of Mg-Li-Er alloys were investigated in LiCl-KCl molten salts. At a molybdenum electrode, the electroreduction of Er (III) proceeded in a one-step process involving three electrons. The diffu-sion coefficient of erbium ions in the melts was determined by cyclic voltammetry, chronopotentiometry and chronoamperometry respectively. Cyclic voltammograms (CVs) showed that the underpotential deposition (UPD) of lithium on pre-deposited Mg-Er alloy led to the formation of a Mg-Li-Er alloy. X-ray diffraction (XRD) indicated that Er5Mg24 phase was formed via potentiostatic electrolysis. Scanning electron microscopy (SEM) showed that Er atoms mainly concentrated at the grain boundaries while Mg element evenly located in the alloy.The electrodeposition of erbium on molybdenum electrodes and the formation of Mg-Li-Er alloys were investigated in LiCl-KCl molten salts. At a molybdenum electrode, the electroreduction of Er (III) proceeded in a one-step process involving three electrons. The diffu-sion coefficient of erbium ions in the melts was determined by cyclic voltammetry, chronopotentiometry and chronoamperometry respectively. Cyclic voltammograms (CVs) showed that the underpotential deposition (UPD) of lithium on pre-deposited Mg-Er alloy led to the formation of a Mg-Li-Er alloy. X-ray diffraction (XRD) indicated that Er5Mg24 phase was formed via potentiostatic electrolysis. Scanning electron microscopy (SEM) showed that Er atoms mainly concentrated at the grain boundaries while Mg element evenly located in the alloy.

关 键 词:ELECTRODEPOSITION rare earth molten salt LiCl-KCl ELECTROLYSIS 

分 类 号:TG146.22[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象