具拟线性扩散系数的脉冲中立型抛物系统的(强)振动性  被引量:14

(Strong) oscillation for systems of impulsive neutral parabolic equations with quasilinear diffusion coefficient

在线阅读下载全文

作  者:罗李平[1] 俞元洪[2] 

机构地区:[1]衡阳师范学院数学与计算科学系,湖南衡阳421008 [2]中国科学院应用数学研究所,北京100080

出  处:《振动与冲击》2011年第8期183-186,共4页Journal of Vibration and Shock

基  金:湖南省教育厅科研项目(07C164)

摘  要:研究一类具拟线性扩散系数的脉冲中立型抛物偏微分系统解的(强)振动性,直接利用振动的定义、Green公式和Neumann边值条件将这类脉冲中立型抛物系统的振动问题转化为脉冲中立型微分不等式不存在最终正解的问题,并利用最终正解的定义和脉冲中立型微分不等式,获得了该类系统(强)振动的充分判据.所得结果充分反映了脉冲和时滞在振动中的作用。The (strong) oscillation of solutions for the systems of a class of impulsive neutral parabolic partial differential equations with quasilinear diffusion coefficient was studied. By using the definition of oscillation, Green's formula and Neumann boundary condition directly, the problem of solution oscillation for the systems of impulsive neutral parabolic equations was reduced to the problem of whether the impulsive neutral differential inequality has or not eventually positive solution, and thereby some sufficient criteria concerned for such systems were obtained. The obtained results fully reflect the influencial actions of impulses and delays on oscillation.

关 键 词:拟线性扩散系数 脉冲 中立型 抛物偏微分系统 (强)振动 

分 类 号:O175.26[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象