In situ U-Pb dating of xenotime by laser ablation (LA)-ICP-MS  被引量:8

In situ U-Pb dating of xenotime by laser ablation (LA)-ICP-MS

在线阅读下载全文

作  者:LIU ZhiChao WU FuYuan GUO ChunLi ZHAO ZiFu YANG JinHui SUN JinFeng 

机构地区:[1]State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China [2]Graduate University of Chinese Academy of Sciences, Beijing 100049, China [3]Institute of Mineral Deposits, Chinese Academy of Geological Sciences, Beijing 100037, China [4]School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

出  处:《Chinese Science Bulletin》2011年第27期2948-2956,共9页

基  金:supported by the State Key Laboratory of Lithospheric Evolution (Zhuan-0809)

摘  要:Xenotime is an ideal mineral for U-Th-Pb isotopic dating because of its relatively high U and Th contents, but typically low concentration of common Pb. These characteristics, and the fact that it is widespread throughout various types of rocks, suggest that the U-Th-Pb dating of xenotime has broad applications. Studies of U-Pb dating on xenotime by ion microprobe (such as SHRIMP) have increased in recent years, whereas studies by laser ablation (LA)-ICP-MS are still rare. In this study, we developed a technique for U-Pb dating of xenotime using the 193 nm ArF laser-ablation system and Agilent 7500a Q-ICP-MS. To evaluate the reliability of our method, a xenotime standard, BS-1, was analyzed and calibrated against another xenotime standard, MG-1. The weighted mean 206 Pb/ 238 U ages of 510.1 ± 5.2 Ma (2 n = 21), 509.8 ± 4.3 Ma (2 n = 21) and 510.0 ± 4.6 Ma (2 n = 21) were obtained using beam diameters of 16, 24 and 32 m, respectively. These ages are identical to those determined by ID-TIMS method (weighted mean 206 Pb/ 238 U age of 508.8 ± 1.4 Ma), which supports the reliability of our LA-ICP-MS method. We also analyzed xenotimes in leucogranites from South Tibet and granites from Xihuashan in southern China, and obtained accurate and precise ages. Nevertheless, we observed systematic differences in Pb/U fractionation among xenotime, monazite and zircon. The matrix-effect resulted in either under-correction or over-correction of fractionation, and thus led to inaccurate ages. Thus, a matrix-matched material is required for U-Pb dating of xenotime by LA-ICP-MS.Xenotime is an ideal mineral for U-Th-Pb isotopic dating because of its relatively high U and Th contents, but typically low concentration of common Pb. These characteristics, and the fact that it is widespread throughout various types of rocks, suggest that the U-Th-Pb dating of xenotime has broad applications. Studies of U-Pb dating on xenotime by ion microprobe (such as SHRIMP) have increased in recent years, whereas studies by laser ablation (LA)-ICP-MS are still rare. In this study, we developed a technique for U-Pb dating of xenotime using the 193 nm ArF laser-ablation system and Agilent 7500a Q-ICP-MS. To evaluate the reliability of our method, a xenotime standard, BS-1, was analyzed and calibrated against another xenotime standard, MG-1. The weighted mean 206 Pb/ 238 U ages of 510.1 ± 5.2 Ma (2 n = 21), 509.8 ± 4.3 Ma (2 n = 21) and 510.0 ± 4.6 Ma (2 n = 21) were obtained using beam diameters of 16, 24 and 32 m, respectively. These ages are identical to those determined by ID-TIMS method (weighted mean 206 Pb/ 238 U age of 508.8 ± 1.4 Ma), which supports the reliability of our LA-ICP-MS method. We also analyzed xenotimes in leucogranites from South Tibet and granites from Xihuashan in southern China, and obtained accurate and precise ages. Nevertheless, we observed systematic differences in Pb/U fractionation among xenotime, monazite and zircon. The matrix-effect resulted in either under-correction or over-correction of fractionation, and thus led to inaccurate ages. Thus, a matrix-matched material is required for U-Pb dating of xenotime by LA-ICP-MS.

关 键 词:PB同位素 激光烧蚀 磷钇矿 ICP MS法 年龄 LA 原位 

分 类 号:P597.3[天文地球—地球化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象