检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽科技学院网络中心,安徽滁州233100 [2]武汉大学电子信息学院,武汉430079
出 处:《计算机应用研究》2011年第9期3569-3571,3575,共4页Application Research of Computers
基 金:中央高校基本科研业务费专项资金资助项目(20102120103000004);河南省重大科技攻关资助项目(072SGZS38042)
摘 要:保局投影算法(LPP)在人脸识别中具有较好的识别性能,但它是一种非监督学习,并且在具体实现时需要把图像转换为向量,破坏了图像的像素结构,这显然不利于模式识别。针对这些问题,提出基于酉子空间的二维判别保局算法,不仅在判别保局算法的基础上增加了类别信息,而且直接在灰度矩阵上进行水平和垂直方向上的二维保局投影。该方法构造酉空间上的复向量后再运用线性判别分析提取特征。在ORL、Yale和XJTU人脸库中验证了算法的正确性和有效性,其识别率比传统的2DLDA和2DLPP等方法提高4~5个百分点。LPP has good performance in face recognition,but it is an unsupervised algorithm and has to convert the matrix to a vector which will destroy the image pixel structure,both of which are not beneficial to pattern recognition.To address these problems,proposed an algorithm based on unitary-subspace 2D discriminant locality preserving projection.Based on LPP,the proposed algorithm took the class information into account,performed also 2DLPP in the horizontal and vertical direction to obtain two feature matrixes,and then combined them to form a complex matrix in the unitary subspace,and lastly extracted the feature according to the linear discriminant analysis.Experiments based on ORL,Yale and XJTU face database demonstrate the correctness and effectiveness of the new algorithm,and the recognition rate increased by approximately 5% compared with traditional methods,such as 2DLDA,2DLPP.
关 键 词:人脸识别 局部保持投影 二维判别保局投影 酉子空间
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33