检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张琪[1] 张继权[1] 严登华[2] 佟志军[1] 刘兴朋[1]
机构地区:[1]东北师范大学城市与环境科学学院自然灾害研究所,长春130024 [2]中国水利水电科学研究院,北京100038
出 处:《中国农业气象》2011年第3期451-455,共5页Chinese Journal of Agrometeorology
基 金:国家自然科学基金(4107132640871236);全球变化研究国家重大科学研究计划(2010CB951102);"十一五"国家科技支撑计划课题(2007BAC29B04);"十一五"国家科技支撑重大项目(2008BAJ08B14);公益性行业(农业)科研专项(200903041)
摘 要:利用辽宁省朝阳市1970-2006年逐旬降水量数据和玉米产量数据,采用多尺度SPI指数、判别式分析法、滑动直线平均法建立玉米干旱灾害风险预测模型,以探寻一种预测玉米不同生育阶段干旱灾害风险的新方法。结果显示,模型预测准确率随着生育阶段的推进不断提高,平均可达83.8%;模型对高风险、低风险、无风险组预测的准确率不同,其中高风险预测准确率最高,可达90.9%,无风险组最低,为78.9%;其中乳熟阶段准确率提高幅度最大,由前一阶段的67.6%提升到83.8%,表明乳熟阶段是否干旱对最终产量影响更明显,是玉米的关键生育期。研究表明,将多尺度SPI与判别式分析法相结合进行风险预测准确率较高,能够满足业务服务需求,尤其适合于干旱为主导灾害的地区。The prediction model to drought risk for maize in different growing stages was established,by using multi-scale SPI,discriminant analysis and linear sliding average method,based on the data of precipitation during each ten days and maize yield in Chaoyang city,Liaoning province.The results showed that the accuracy of the model increased with the growing stages promoted and got to 83.8%.Accuracy of the model for high-risk group,low-risk group,and normal group were different,which was highest and could be 90.9% to high-risk group,and was lowest and could be 78.9% to normal group.It had highest accuracy at milky-ripening stage,which increased to 83.8%from 67.6% at former stage.It indicated that the milky-ripening stage was the key growing stage for maize,had more prominent influence on the final yields.The results indicated that the prediction model had high accuracy,could meet the demand of business service,especially for the regions where drought was the main disaster.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117