基于时域和空域混合的低信噪比视频降噪算法及其分析  被引量:4

The Analysis of Low SNR Video Denoising Algorithms Using Temporal Domain and Spatial Domain Mixture Methods

在线阅读下载全文

作  者:宋博[1] 徐超[1] 金伟其[1] 刘效东[2] 

机构地区:[1]北京理工大学光电学院,“光电成像技术与系统”教育部重点实验室,北京100081 [2]江苏北方湖光光电有限公司,江苏无锡214035

出  处:《红外技术》2011年第8期489-494,共6页Infrared Technology

基  金:总装十二五预研项目:“微光夜视技术”国防重点实验室基金项目(编号:J20110501)

摘  要:论述了几种基于时域和空域混合的对低信噪比视频图像进行降噪处理的算法。考虑单独使用时域或空域降噪算法对视频图像进行处理的缺点和不足。在时域上,由于视频图像帧与帧之间有较强的相关性,采用递归加权算法;在空域上,分别采用第二代Curvelet变换理论的Wrap算法(Wrapping-Based Transform)、全变差(TV)算法、Lee降噪算法、基于偏微分方程各向同性非线性扩散去噪算法(PM-AOS算法)以及中值滤波等降噪算法。实验结果表明时域和空域混合的降噪算法可提供较好的视觉效果,较好地保留视频图像的边缘、纹理等细节信息,超过单独使用时域或空域对视频图像降噪的算法,且部分算法处理时间相对较短,具有在硬件平台上移植的可行性。This paper presents several mixture methods based on temporal domain and spatial domain of low SNR video denoising algorithms. The new methods take into account separately the insufficiency of temporal domain, or spatial domain video denoising algorithm. In temporal domain, there is a strong link between video image frames and frames, so we adopt the recursive weighting algorithm. In spatial domain, we adopt Curvelet Transform theory of second generation algorithm (Wrap' Wrapping - Based Transform), Total Variation(TV) algorithm, Lee's image enhancement algorithm, the anisotropic nonlinear-diffused algorithm based on P-M equation (PM-AOS) and the median filtering algorithm, etc. Experiment results show that the effect of these temporal domain and spatial domain mixture denoising algorithms is obvious. These kinds of algorithms could provide better video quality, better retention of image edge and texture details. The processing time of Several temporal domain and spatial domain mixture methods is shorter, and these methods have larger practical application on the processing of video denosing in the hardware platform through algorithm transplantation.

关 键 词:低信噪比 视频图像降噪 时空域联合 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象