High-Temperature Oxidation Behavior of Vanadium,Titanium-Bearing Magnetite Pellet  被引量:24

High-Temperature Oxidation Behavior of Vanadium,Titanium-Bearing Magnetite Pellet

在线阅读下载全文

作  者:HAN Gui-hong JIANG Tao ZHANG Yuan-bo HUANG Yan-fang LI Guang-hui 

机构地区:[1]School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, Hunan, China

出  处:《Journal of Iron and Steel Research International》2011年第8期14-19,共6页

基  金:Item Sponsored by National Science Fund for Distinguished Young Scholars of China(50725416);National Natural Science Foundation of China(50804059);National Key Programof Science and Technology of China(2008BAB32B06);Graduate Degree Thesis Innovation Foundation of Hunan Province and Central South University of China(1960-71131100053)

摘  要:By means of isothermal oxidation and chemical analysis, great importance was attached to the parameters that made effects on the oxidation degree of vanadium, titanium-bearing magnetite pellet in high-temperature processing (1 073- 1 323 K). Based on the experimental data, oxidation kinetics of pellet was analyzed according to shrinking unreacted-core model subsequently. Experiment results display that the oxidation degree of pellet increases with increasing of oxidation time, oxidation temperature and oxygen content, as well as shrinking of pellet diameter. Under the condition of oxidation time 20 min, oxidation temperature 1223 K, oxygen content 15%, and pellet diameter 12 mm, oxidation degree of pellet reaches 92.92%. The analysis of oxidation kinetics indicates that oxidation process of pellet is controlled by chemical reaction with activation energy 68.64 kJ/mol at a relatively lower temperature (1073-1 173 K). Oxidation process of pellet is mixed-controlled by chemistry reaction and diffusion with activation energy 39.66 kJ/mol in the temperature range of 1 173-1 273 K. When oxidation temperature is higher than 1 273 K, the limited link of oxidation reaction is the diffusion control with the activation energy 20.85 kJ/mol. These results can serve as a reference to the production of vanadium, titanium-hearing magnetite pellet.By means of isothermal oxidation and chemical analysis, great importance was attached to the parameters that made effects on the oxidation degree of vanadium, titanium-bearing magnetite pellet in high-temperature processing (1 073- 1 323 K). Based on the experimental data, oxidation kinetics of pellet was analyzed according to shrinking unreacted-core model subsequently. Experiment results display that the oxidation degree of pellet increases with increasing of oxidation time, oxidation temperature and oxygen content, as well as shrinking of pellet diameter. Under the condition of oxidation time 20 min, oxidation temperature 1223 K, oxygen content 15%, and pellet diameter 12 mm, oxidation degree of pellet reaches 92.92%. The analysis of oxidation kinetics indicates that oxidation process of pellet is controlled by chemical reaction with activation energy 68.64 kJ/mol at a relatively lower temperature (1073-1 173 K). Oxidation process of pellet is mixed-controlled by chemistry reaction and diffusion with activation energy 39.66 kJ/mol in the temperature range of 1 173-1 273 K. When oxidation temperature is higher than 1 273 K, the limited link of oxidation reaction is the diffusion control with the activation energy 20.85 kJ/mol. These results can serve as a reference to the production of vanadium, titanium-hearing magnetite pellet.

关 键 词:VANADIUM titanium-bearing magnetite oxidation degree PELLET shrinking unreaeted-core model oxidation kinetics 

分 类 号:O614.511[理学—无机化学] TQ174.758[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象