基于菌群-粒子群算法的混合有源滤波器中无源滤波器多目标优化设计  被引量:2

Multi-objective Optimal Design for Passive Part of Hybrid Active Power Filter Based on Bacterial Foraging and Particle Swarm Optimization

在线阅读下载全文

作  者:李圣清[1] 李永安[1] 罗晓东[1] 曾黎琳[1] 何政平[1] 

机构地区:[1]湖南工业大学,湖南株洲412008

出  处:《大功率变流技术》2011年第4期13-16,31,共5页HIGH POWER CONVERTER TECHNOLOGY

基  金:国家自然科学基金资助项目(51077046);湖南省自然科学基金项目(09JJ6070);湖南省教育厅重点科研项目(09A022);湖南工业大学研究生创新基金项目(CX1113)

摘  要:采用粒子群优化算法(particle swarm optimization,PSO)和菌群优化算法(bacterial foraging optimization,BFO)相结合的、带有随机惯性因子和异步时变学习因子的改进型BFO-PSO优化算法,解决混合型有源滤波器中无源滤波器参数优化设计问题。通过将滤波器的无功补偿容量、补偿后滤波效果及初期投资成本作为优化目标,采用重要目标加动态常数制约法给出综合适应度函数,进而求解多目标优化问题。仿真验证了理论分析和设计的正确性,相关设计方法也可为其他类型的无源滤波器的优化设计提供借鉴。With combination of particle swarm optimization algorithm and bacterial foraging optimization,an improved BFO-PSO optimized algorithm based on the random inertia factor and asynchronous time-dependent learning factor is used to solve optimal design,s problems of passive filter parameters for hybrid active filter.It takes the capacity of reactive power compensation,the harmonic effect after compensation and the original investment cost as three objectives,and restricts the important goal and dynamic constants as a method to achieve comprehensive fitness function,and then solves the multi-objective optimization problem.Simulation result verifies the correctness of the mentioned theory and design.Such design method can be used as a reference for design optimization of other type passive power filters.

关 键 词:优化设计 无源滤波器 菌群-粒子群优化算法 

分 类 号:TN713[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象