Rate-distortion weighted SPIHT algorithm for interferometer data processing  

Rate-distortion weighted SPIHT algorithm for interferometer data processing

在线阅读下载全文

作  者:Jing Ma Jindong Fei Dong Chen 

机构地区:[1]Science and Technology on Space Systems Simulation Laboratory, Beijing Simulation Center, Beijing 100854, E R. China [2]Institute of Telecommunication Satellite, China Academy of Space Technology, Beijing 100094, P. R. China

出  处:《Journal of Systems Engineering and Electronics》2011年第4期547-556,共10页系统工程与电子技术(英文版)

摘  要:As one of the next generation imaging spectrometers, the interferential spectrometer (iS) possesses the advantages of high throughput, multi-channel and great resolution. The data of IS are produced in the spatial domain, but optical applications are in the Fourier domain. Traditional compression methods can only protect the visual quality of interferometer data in the spatial do- main but ignore the distortion in the Fourier domain. The relation between the distortion in the Fourier domain and the compression in the spatial domain is analyzed. By mathematical proof and val- idation with experiments, the relation between spatial and Fourier domains is discovered, and the significance in the Fourier domain is more important as optical path difference (OPD) increasing in the spatial domain. Based on this relation, a novel coding scheme is proposed, which can compress data in the spatial domain while reducing the distortion in the Fourier domain. In this scheme, the bit stream of the set partitioning in hierarchical trees (SPIHT) is truncated by adaptively lifting rate-distortion slopes according to the priorities of OPD based on rate-distortion optimization theory. Experimental results show that the proposed method can provide better protection of spectrum curves in the Fourier domain while maintaining a comparable visual quality in the spatial domain.As one of the next generation imaging spectrometers, the interferential spectrometer (iS) possesses the advantages of high throughput, multi-channel and great resolution. The data of IS are produced in the spatial domain, but optical applications are in the Fourier domain. Traditional compression methods can only protect the visual quality of interferometer data in the spatial do- main but ignore the distortion in the Fourier domain. The relation between the distortion in the Fourier domain and the compression in the spatial domain is analyzed. By mathematical proof and val- idation with experiments, the relation between spatial and Fourier domains is discovered, and the significance in the Fourier domain is more important as optical path difference (OPD) increasing in the spatial domain. Based on this relation, a novel coding scheme is proposed, which can compress data in the spatial domain while reducing the distortion in the Fourier domain. In this scheme, the bit stream of the set partitioning in hierarchical trees (SPIHT) is truncated by adaptively lifting rate-distortion slopes according to the priorities of OPD based on rate-distortion optimization theory. Experimental results show that the proposed method can provide better protection of spectrum curves in the Fourier domain while maintaining a comparable visual quality in the spatial domain.

关 键 词:interferential spectrometer (IS) multi-spectrum compression set partitioning in hierarchical trees (SPIHT). 

分 类 号:TP274.2[自动化与计算机技术—检测技术与自动化装置] TN919.81[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象