检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张园园[1] 龚庆武[1] 陈道君[1] 刘栋[1]
机构地区:[1]武汉大学电气工程学院,湖北省武汉市430072
出 处:《电网技术》2011年第9期92-98,共7页Power System Technology
摘 要:针对模糊C-均值聚类方法(fuzzy C-means,FCM)应用于机组分群时存在易收敛于局部最优值的问题,提出了改进的粒子群优化(particle swarm optimization,PSO)的模糊C-均值聚类算法(PSO-FCM)用于机组分群的方法,并阐述了分群算法中关键参数的选取方法。为充分利用FCM多特征量分析的优点,同时引入了功角、角速度作为分群特征量,提出了利用同调性指标自适应确定分群数目的方法,分群时采用约1个摇摆周期的数据分析。理论分析和仿真结果表明,所提方法能够取得一致、稳定的分群结果,效果优于传统的模糊聚类方法。To remedy the defect of fuzzy C-means (FCM) that it is sensitive to initial value and when it is used to group the generation units the solution is likely to converge on local optimal value, an improved particle swarm optimization (PSO)-FCM algorithm is proposed, and an approach to select the key parameters in the grouping algorithm is expounded. To take full advantage of multi-character analysis of FCM, the angle and angular velocity are simultaneously led in as clustering characters, so the problem of selecting recombination coefficient in recombination angle method can be avoided, and a method to adaptively determine the clustering number by coherent norm, which utilizes fully fuzzy partition matrix and enhances the flexibility of grouping, is proposed. Trajectories data around a swing cycle are analyzed for grouping, which can track the dynamic changes of generator grouping. Theoretical analysis and simulations results show that the proposed algorithm can achieve consistent and stable grouping result that is better than the traditional fuzzy clustering algorithm.
关 键 词:粒子群优化 模糊C.均值聚类 机组动态分群 同调性指标
分 类 号:TM712[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195