检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]贵州民族学院计算机与信息工程学院,贵阳550025 [2]贵州大学物理系,贵阳550025 [3]中国科学院安徽光学精密机械研究所环境光学实验室,合肥230031
出 处:《Chinese Journal of Chemical Physics》2011年第4期419-424,I0003,共7页化学物理学报(英文)
基 金:This work was supported by the National Natural Science Foundation of China (No.10865003) and the Science and Technology Foundation of GuiZhou Province, China (No.[201112107). We thank the Key Laboratory of Guizhou High Performance Computational Chemistry for computer time.
摘 要:Quantum chemical calculations are performed to study the reactions of OH and ozone with- out and with water to estimate whether the single water molecule can decrease the energy barrier of the OH radical reaction with ozone. The calculated results demonstrate that the single water molecule can reduce the activated barrier of the naked OH+Oa reaction with the value of about 4.18 kJ/mol. In addition, the transition state theory is carried out to determine whether the single water molecule could enhance the rate constant of the OH+O3 reaction. The computed kinetic data indicate that the rate of the ozone reaction with the formed complexes between OH and water is much slower than that of the OH+O3 reaction, whereas the rate constant of OH reaction with the formed H20---Oa complex is 2 times greater than that of the naked OH radical with ozone reaction. However, these processes in the atmosphere are not important because the reactions can not compete well with the naked reaction of OH with ozone under atmospheric condition.
关 键 词:OZONE OH H20 Atmospheric chemistry Quantum chemical calculation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117