检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江大学农业与生物技术学院种子科学中心,浙江杭州310058 [2]山东省农作物种质资源中心,山东济南250100
出 处:《生物数学学报》2011年第2期269-278,共10页Journal of Biomathematics
基 金:National Natural Science Foundation of China(No.30270759);the Natural Science Foundation of Shandong Province,China(No.ZR2010CQ016);the Scientific Research Foundation for PhDs in Shandong Academy of Agricultural Sciences(No. 2007YBS005)
摘 要:将连续性的基因型值数据和间断性的分子标记数据整合建立混合遗传距离,对比了应用混合遗传距离和单纯应用基因型遗传距离构建植物遗传资源核心子集的效果.应用混合线性模型中的调整无偏预测法(AUP)预测基因型值,结合不加权类平均法(UPGMA)逐步聚类构建遗传资源群体的核心子集,并检测一系列核心子集的代表性评价参数.采用包含8个农艺性状和60个SSR标记信息的水稻群体数据验证混合遗传距离的有效性.结果表明,采用混合数据构建的核心子集比单纯的基因型值数据构建的核心子集更有代表性.主成分分析结果验证了该结论的可靠性.In present paper, core subset constructed by mixed data of continuous genotypic values and discrete molecular marker information was compared with that by single data of genotypic values. The mixed genetic distance was adopted to combine the continuous data and the discrete data for clustering. The method of stepwise clusters was used for constructing core subset. Adjusted unbiased prediction (AUP) method of mixed linear model was adopted to unbiasedly predict genotypic values. The unweighted pair-group average method (UPGMA) was used to perform stepwise clusters to construct core subset. A series of parameters for evaluating the representativeness of core subset were suggested. A rice germplasm group with 8 quantitative traits and information of 60 SSR markers was used to evaluate the validity of the new strategy. The results suggested that core subset constructed based on mixed data was more representative than that constructed based on genotypic values. The principal components analysis validated the results.
关 键 词:核心子集 逐步聚类法 混合线性模型 基因型值 分子标记信息
分 类 号:S32[农业科学—作物遗传育种]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.161.16