检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学电子工程系,北京100084 [2]交通运输部公路科学研究院,北京100088 [3]清华大学深圳研究生院,深圳518055
出 处:《中国图象图形学报》2011年第9期1561-1576,共16页Journal of Image and Graphics
摘 要:在雾、霾等天气条件下,大气粒子的散射作用导致成像传感器采集的图像严重降质。图像去雾技术的任务是去除天气因素对图像质量的影响,从而增强图像的视见度。本文归纳和总结了图像去雾技术的国内外研究现状。将现有的方法分为基于物理模型和非物理模型两类,分别详细阐述了这两类方法,分析它们各自的优势和不足,并总结了算法性能评价的无参考客观质量评测准则。最后,指出该技术的研究难点和发展趋势。Imaging in the atmosphere is often degraded by scattering due to atmospheric particles such as haze, fog and mist. The task of visibility enhancement techniques is to correct for the loss of contrast and color fidelity,which can lead to large improvement in image quality. In this paper,we present a review on established approaches for visibility enhancement of images taken under foggy and hazy conditions. These approaches are grouped into two categories, namely, physics based and non physics based. We illustrate them in detail and then characterize their strengths and limitations, respectively. Additionally, some reference-free objective quality metrics are provided for quantifying the performance related to contrast and chromatic diversity. Finally, further discussions are pointed out on technical challenges and future development.
关 键 词:图像去雾 视见度 颜色恒常性 大气散射模型 无参考客观质量评测
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229