独立环形对称Gabor特征及在人脸识别中的应用  

Independent circularly symmetrical Gabor feature for face recognition

在线阅读下载全文

作  者:张亮亮[1] 孙国霞[1] 

机构地区:[1]山东大学信息科学与工程学院,济南250100

出  处:《计算机工程与应用》2011年第25期178-181,219,共5页Computer Engineering and Applications

基  金:山东省自然科学基金(No.Y2007G04)

摘  要:提出了一种基于2D环形对称Gabor变换(2DCSGT)和独立成分分析(ICA)的特征提取方法,并用于人脸识别中。对人脸图像做5尺度2D环形对称Gabor变换;对变换后的图像下采样并采用主成分分析(PCA)进行降维;采用ICA获得人脸图像的独立环形对称Gabor特征(ICSGF);采用最近邻分类法分类。在ORL、YALE和FERET人脸数据库上,基于ICSGF的人脸识别算法的正确识别率分别达到99.5%、93.33%和97.14%。实验结果表明,ICSGF方法有效可行。This paper presents a new feature extraction method for face recognition using 2D Circularly Symmetrical Gabor Transform(2DCSGT) and Independent Component Analysis(ICA).A circularly symmetrical Gabor feature vector is derived from a set of downsampled circularly symmetrical Gabor wavelet representations of face images.The dimension of the circularly symmetrical Gabor feature vector is reduced by means of Principal Component Analysis(PCA).Independent Circularly Symmetrical Gabor Features(ICSGF) are defined based on Independent Component Analysis.To show the validity of the proposed method,it is applied to face recognition on the ORL,YALE and FERET databases.In particular,the ICSGF method achieves 99.5% correct face recognition accuracy for ORL database,93.33% accuracy for Yale database and 97.14% accuracy for FERET database.Experimental results show that the algorithm is feasible and effective for face recognition.

关 键 词:人脸识别 环形对称Gabor变换(CSGT) 主成分分析(PCA) 独立成分分析(ICA) 最近邻分类器 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象