检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾龙涛[1] 朱陈平[1] 刘小廷[1] 陈昌东[1]
机构地区:[1]南京航空航天大学应用物理系,南京210016
出 处:《复杂系统与复杂性科学》2011年第3期13-18,共6页Complex Systems and Complexity Science
基 金:国家自然科学基金(70471084;10775071;10635040);国家基础科学重大研究课题(2006CB705500)
摘 要:数值模拟了实验上构造纳米碳管网络的溶液沉积方法。与一般的随机网络模型不同,将碳管的长度计算在内,而且考虑了不同的空间相交位形。数值模拟发现网络的度分布为高斯分布,平均集聚系数约为0.11。当网络中碳管平均面密度取值在0σ=179 200根/cm2附近时,网络系综达到渗流。在临界点附近,网络的连通概率p、两极之间电导G、最大连接数S与碳管的面密度差Δσ之间都存在幂律关系。除此之外,考虑碳管之间的Kapizza接触热阻,计算出碳管网络的热阻,发现高低温热源之间的渗流热阻与导通碳管的长度的平方和成线性关系。In this paper,we numerically simulate a solution-deposited approach to form carbon nanotube networks in experiments.Different from generally used random network models,we have taken various lengths and intersecting configurations of carbon nanotubes into account.The degree distribution of the network is found to be Gaussion type and the average clustering coefficient of it is about 0.11 by simulation.The ensemble of networks arrives at percolation when the average density of carbon nanotubes takes the values around 179 200 pieces/cm2.Near the threshold,the global connecting probability p,the conductance G between two electric poles and the maximum connected numbers of tubes all behave power-low relations with the difference of density Δσ on the two-dimensional plane.Moreover,considering Kapizza contacting thermal resistance between carbon nanotubes,we obtain the thermal resistance of the whole network.The percolation thermal resistance between the high and low heat reservoirs behaves linearly with the summation of squares of lengths of connecting carbon nanotubes.
分 类 号:N949[自然科学总论—系统科学] O41[理学—理论物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.175