求解批量流水线调度问题的离散蜂群算法  被引量:9

A Discrete Artificial Bee Colony Algorithm for Lot-streaming Flow Shop Scheduling Problem

在线阅读下载全文

作  者:桑红燕[1,2] 高亮[1] 李新宇[1] 

机构地区:[1]华中科技大学数字制造装备与技术国家重点实验室,武汉430074 [2]聊城大学,聊城252059

出  处:《中国机械工程》2011年第18期2195-2202,共8页China Mechanical Engineering

基  金:国家自然科学基金资助项目(60973086;51005088);新世纪优秀人才计划资助项目(NCET-08-0232)

摘  要:针对批量流水线调度问题,提出一种离散人工蜂群算法来优化最大完成时间。研究了计算最大完工时间的前向和后向方法,并提出插入邻域快速算法。与传统的人工蜂群算法不同,离散人工蜂群算法采用工件序列编码,运用扩展的NEH方法产生初始种群,使用自适应的移动选择策略和路径链接方法生成新解,利用基于插入邻域快速算法的局部搜索来加强局部开发能力。同时为了保持种群的多样性,防止算法陷入局部极小,当种群相似度达到一定值时进行算法重启。仿真实验表明该算法可行、高效。A discrete artificial bee colony(DABC) algorithm was presented for solving the lot-- streaming flow shop scheduling problem(LFSP) with the objective of minimizing the maximum com- pletion time, i. e. , makespan. Two methods for calculating makespan, namely forward pass calcula tion and backward pass calculation were investigated respectively, and a speed--up approach to evalu- ate the whole insertion neighborhood was presented. Unlike the traditional ABC algorithm, in the proposed DABC algorithm, individuals were represented as discrete job permutations. An initialization taking advantage of an extended NEH(Nawaz--Enscore--Ham) heuristic was used to produce a popu- lation with certain diversity and quality. An adaptive strategy based on insert and swap operators and a path re--linking strategy were utilized to generate neighboring food sources. An effective local search based on insertion neighborhood was fused to enhance the algorithm ' s exploitation. At the same time, to maintain diversity of the population and avoid to trapping into a local optimum, a restart mechanism was performed when the similarity of the individuals in the population was larger than a given threshold value. Extensive experiments were provided and the comparisons show that the pro- posed DABC algorithm is effective and efficient for the LFSP.

关 键 词:批量流水线调度 最大完成时间 人工蜂群算法 自适应策略 路径链接 

分 类 号:TP278[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象