检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马冠雄
机构地区:[1]佛山南海电力设计院工程有限公司,广东佛山528200
出 处:《广东电力》2011年第8期21-25,103,共6页Guangdong Electric Power
摘 要:电力系统静态电压稳定分析中,常见有鞍结型分岔点和极限诱导型分岔点。识别和计算这2种不同的分岔点的意义在于准确地计算在分岔点处各种控制变量对于电压稳定裕度的灵敏度,从而为最终的控制服务。对该问题当前的研究现状进行了综述,主要介绍了鞍结型分岔点和极限诱导型分岔点各自的原理和特性,对识别和计算这2种不同分岔点的主要方法进行了论述,并就各种算法的计算量大小、求解速度、收敛性和实用性等方面进行了分析比较。最后,指出了这2种分岔点的识别和计算方法的未来研究方向和需要解决的问题。Saddle-node bifurcation point and limit-induced bifurcation point are commonly seen in analysis of steady-state voltage stability of power system. The recognition and calculation of the two different bifurcation points can enables precise calculation of sensitivity of various control variables at bifurcation points to voltage stability margin so as to achieve the control. The paper reviews on the status of current research on the problem and it mainly introduces respective principles and characteristics of saddle-node bifurcation point and limit-induced bifurcation point; in addition, the paper discusses main methods for recognition and calculation of the both different bifurcation points, and it comparatively analyzes amount of calculation, efficiency, astringency and practicability of the calculation methods. Finally, futural research direction and problems that need to be solved in recognition and calculation of the two different bifurcation points are stated.
关 键 词:鞍结型分岔点 极限诱导型分岔点 电压稳定裕度 灵敏度
分 类 号:TM712.2[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15