检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Transactions of Tianjin University》2011年第5期344-350,共7页天津大学学报(英文版)
基 金:Supported by the National High Technology Research and Development Program of China ("863" Program, No.2008AA042509)
摘 要:This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed in the FEM simulation. The simulated cutting forces and chip morphology were compared with experimental results. The simulation result indicates that there is a close relationship between the cutting force and cutting heat. The micro-cutting force decreases as the heat flux vector increases. Both the cutting heat and the micro-cutting force need a finite time to achieve a steady state. It is observed that with the cutting speed of 169.95 m/min and uncut chip thickness of 6 μm, the heat flux vector in the workpiece increases to a stable value after 0.06 ms; meanwhile, the principal cutting force decreases to a steady state correspondingly, i.e., the micro-cutting process achieves the steady state. It is concluded that the steady state micro-cutting simulation can reflect the cutting process accurately.This paper studies the micro-cutting characteristics of aluminum alloy (2A12) based on a series of orthogonal experiments and finite element method (FEM) simulations. An energy-based ductile failure law was proposed in the FEM simulation. The simulated cutting forces and chip morphology were compared with experimental results. The simulation result indicates that there is a close relationship between the cutting force and cutting heat. The micro-cutting force decreases as the heat flux vector increases. Both the cutting heat and the micro-cutting force need a finite time to achieve a steady state. It is observed that with the cutting speed of 169.95 m/min and uncut chip thickness of 6 μm, the heat flux vector in the workpiece increases to a stable value after 0.06 ms; meanwhile, the principal cutting force decreases to a steady state correspondingly, i.e., the micro-cutting process achieves the steady state. It is concluded that the steady state micro-cutting simulation can reflect the cutting process accurately.
关 键 词:MICRO-CUTTING aluminum alloy steady state finite element method
分 类 号:TG146.21[一般工业技术—材料科学与工程] O241.82[金属学及工艺—金属材料]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143