机构地区:[1]National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China [2]Graduate University of Chinese Academy of Sciences, Beijing 100049, China
出 处:《Research in Astronomy and Astrophysics》2011年第9期1093-1110,共18页天文和天体物理学研究(英文版)
基 金:supported by the National Natural Science Foundation of China (GrantNos. 10873016,10633020,10603006,10803007,10903011,11003021 and 11073032);by the National Basic Research Program of China (973 Program; Nos. 2007CB815403,2010CB833004 and 2009CB82480X)
摘 要:The Andromeda galaxy was observed by the Guoshoujing Telescope (formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope -- LAMOST), during the 2009 commissioning phase. Due to the absence of standard stars for flux calibration, we use the photometric data of 15 intermediate bands in the Beijing-Arizona-Taipei-Connecticut (BATC) survey to calibrate the spectra. In to- tal, 59 spectra located in the bulge and disk of the galaxy are obtained. Kinematic and stellar population properties of the stellar content are derived with these spectra. We obtain the global velocity field and calculate corresponding rotation velocities out to about 7 kpc along the major axis. These rotation velocity measurements comple- ment those of the gas content, such as the H I and CO. The radial velocity dispersion shows that the stars in the bulge are more dynamically thermal and the disk is more rotationally-supported. The age distribution shows that the bulge was formed about 12 Gyr ago, the disk is relatively younger and the ages of some regions along the spi- ral arms can reach as young as about 1 Gyr. These young stellar populations have a relatively richer abundance and larger reddening. The overall average metallicity of the galaxy approximates the solar metallicity and a very weak abundance gradient is gained. The reddening map gives a picture of a dust-free bulge and a distinct dusty ring in the disk.The Andromeda galaxy was observed by the Guoshoujing Telescope (formerly named the Large Sky Area Multi-Object Fiber Spectroscopic Telescope -- LAMOST), during the 2009 commissioning phase. Due to the absence of standard stars for flux calibration, we use the photometric data of 15 intermediate bands in the Beijing-Arizona-Taipei-Connecticut (BATC) survey to calibrate the spectra. In to- tal, 59 spectra located in the bulge and disk of the galaxy are obtained. Kinematic and stellar population properties of the stellar content are derived with these spectra. We obtain the global velocity field and calculate corresponding rotation velocities out to about 7 kpc along the major axis. These rotation velocity measurements comple- ment those of the gas content, such as the H I and CO. The radial velocity dispersion shows that the stars in the bulge are more dynamically thermal and the disk is more rotationally-supported. The age distribution shows that the bulge was formed about 12 Gyr ago, the disk is relatively younger and the ages of some regions along the spi- ral arms can reach as young as about 1 Gyr. These young stellar populations have a relatively richer abundance and larger reddening. The overall average metallicity of the galaxy approximates the solar metallicity and a very weak abundance gradient is gained. The reddening map gives a picture of a dust-free bulge and a distinct dusty ring in the disk.
关 键 词:methods: data analysis -- techniques: spectroscopic -- galaxies: indi- vidual (M31) -- galaxies: stellar content
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...