Adaptive mixed least squares Galerkin/Petrov finite element method for stationary conduction convection problems  

Adaptive mixed least squares Galerkin/Petrov finite element method for stationary conduction convection problems

在线阅读下载全文

作  者:张运章 侯延仁 魏红波 

机构地区:[1]School of Science, Xi'an Jiaotong University [2]School of Mathematics and Statistics, Henan University of Science and Technology

出  处:《Applied Mathematics and Mechanics(English Edition)》2011年第10期1269-1286,共18页应用数学和力学(英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.10871156 and 11171269);the Fund of Xi'an Jiaotong University(No.2009xjtujc30)

摘  要:An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.An adaptive mixed least squares Galerkin/Petrov finite element method (FEM) is developed for stationary conduction convection problems. The mixed least squares Galerkin/Petrov FEM is consistent and stable for any combination of discrete velocity and pressure spaces without requiring the Babuska-Brezzi stability condition. Using the general theory of Verfiirth, the posteriori error estimates of the residual type are derived. Finally, numerical tests are presented to illustrate the effectiveness of the method.

关 键 词:conduction convection problem posteriori error analysis mixed finite element adaptive finite element least squares Galerkin/Petrov method 

分 类 号:O35[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象