Projected subgradient method for non-Lipschitz set-valued mixed variational inequalities  

Projected subgradient method for non-Lipschitz set-valued mixed variational inequalities

在线阅读下载全文

作  者:唐国吉 黄南京 

机构地区:[1]Department of Mathematics, Sichuan University

出  处:《Applied Mathematics and Mechanics(English Edition)》2011年第10期1345-1356,共12页应用数学和力学(英文版)

基  金:supported by the Key Program of National Natural Science Foundation of China(No.70831005);the National Natural Science Foundation of China(No.10671135);the Fundamental Research Funds for the Central Universities(No.2009SCU11096)

摘  要:A projected subgradient method for solving a class of set-valued mixed variational inequalities (SMVIs) is proposed when the mapping is not necessarily Lipschitz. Under some suitable conditions, it can be proven that the sequence generated by the method can strongly converge to the unique solution to the problem in the Hilbert spaces.A projected subgradient method for solving a class of set-valued mixed variational inequalities (SMVIs) is proposed when the mapping is not necessarily Lipschitz. Under some suitable conditions, it can be proven that the sequence generated by the method can strongly converge to the unique solution to the problem in the Hilbert spaces.

关 键 词:set-valued mixed Variational inequality (SMVI) projected subgradient method non-Lipschitz mapping CONVERGENCE 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象