检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]百色学院数学与计算机信息工程系,广西百色533000
出 处:《计算机工程与科学》2011年第9期13-18,共6页Computer Engineering & Science
基 金:国家自然科学基金资助项目(61063046)
摘 要:本文针对目前网络入侵检测学习算法效率不高的问题,首先提出相对距离的概念,然后构造基于相对距离的竞争激活函数和相似性度量,在此基础上提出一种改进的网络入侵检测算法。该算法的优势在于:(1)相对距离能较好地区分极差较大的列属性值并实现归一化;(2)基于相对距离的竞争激活函数可以处理包含符号属性的数据,不需转换为数值,且计算复杂度较低;(3)算法不需要重置机制。通过对KDDCUP99数据集的实验,验证了在检测精度与其他算法相当的情况下,改进算法学习时间和检测时间显著减少。Aiming at the problem of lower efficiency of network intrusion detection learning algo- rithms at present, a concept called relative distance is proposed in this paper, and then competitive acti- vation and similarity measurement are constructed based on it. On that basis we put forward an im proved network intrusion detection algorithm. The advantage of the improved algorithm is: (1) The relative distance can distinguish the terms of column with a large range very well and realize normalization in a lower complexity; (2) Competitive activation of relative distance can process the data which includes the characteristics in a lower computation complexity without converting characters into integers; (3) The algorithm needs no reset. Examination results on the KDD Cup99 sets show that the improved algorithm can reduce the learning time and the testing time significantly while maintaining the accuracy of detection compared to other approaches.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.252.203