检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2011年第17期130-132,共3页Computer Engineering
摘 要:针对标准粒子群优化(PSO)算法存在收敛速度慢、容易陷入局部最优的问题,提出一个改进的PSO算法,该算法设计一种新的惯性权重,在粒子搜索的不同阶段采用不同的计算公式计算惯性权重,并引入自适应变异策略和线性变化的学习因子。实验结果表明,该算法的收敛性等性能比基本粒子群算法有明显提高,能较好地解决非线性问题。As the Particle Swarm Optimization(PSO) algorithm has some shortcomings of slow convergence and easy to fall into the local extreme value,this paper presents a improved particle swarm optimization with a new inertia weight.In different stages of the algorithm run,a corresponding formula is used to calculate the inertia weight.In Addition,adaptive mutation and linear-changed learning factor are introduced.The relational test simulation experiment is carried out.Experimental results show that the improved algorithm is feasible and efficient,it can solve norlinear problem.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249