检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2011年第27期164-167,202,共5页Computer Engineering and Applications
基 金:国家"十一五"科技支撑计划重大项目资助(No.2007AA1Z158);国家自然科学基金(No.60704047);国家自然科学基金重大研究计划(No.9082002)~~
摘 要:提出基于公共矢量的最小类内方差支持向量机(CV-MCVSVM),用于提高噪音人脸图像分类问题中的抗噪性能。它继承了最小类内方差支持向量机(MCVSVMs)的优点,引入了由公共矢量(CVs)构成的散度矩阵Scom,由于CVs包含了样本中的共同信息,因此CV-MCVSVM在定义中将每个样本减去了CVs的均值,保留了更多的分类信息,进一步提高了抗噪能力。给出了CV-MCVSVM的推导过程。经实验验证,在含有噪音人脸图像的分类问题中,CV-MCVSVM获得了比MCVSVMs和总间隔v-支持向量机(TM-v-SVM)更好的分类性能。In this paper,the Minimum Class Variance Support Vector Machines Based on Common Vectors(CV-MCVSVM) as the improved version of Minimum Class Variance Support Vector Machines(MCVSVM) is presented for noisy face recognition,which inherites the advantages of MCVSVM.S com which constituted by the Common Vectors(CVs) is introduced.CVs contain the common information in the samples,so CV-MCVSVM utilizes the mean value of CVs to retain more information on the classification and improve the performance of noisy face classification.The experimental results about noisy face classification demonstrate that the proposed CV-MCVSVM has better classification performance than both MCVSVMs and TM-v-SVM.
关 键 词:支持向量机(SVM) 最小类内方差支持向量机(MCVSVMs) 总间隔v-支持向量机(TM-v-SVM) 判别公共矢量(DCVs) 公共矢量(CVs) 人脸识别
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198