检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山西大学计算中心,太原030006
出 处:《系统科学与数学》2011年第7期804-816,共13页Journal of Systems Science and Mathematical Sciences
基 金:国家自然科学基金(60873128)资助课题
摘 要:在无重复因析试验中,若因子A,B的散度效应显著,则不论其交互效应AB的散度效应是否显著,其散度效应的现有估计常常是有偏的,从而导致其被错误地识别为显著效应.提出了散度效应的一种新的估计方法(称为ML估计),并给出了ML估计的方差的精确表达形式,证明了在一类模型中,交互效应AB的散度效应的ML估计是无偏的.最后,将ML估计与现有的常用估计进行了比较.In unreplicated factorial experiments, if the dispersion effects of factors A, B are active, the existing estimators of dispersion effects are often biased whether or not the dispersion effect of interaction factor AB is active. This results in AB be spuriously identified active factor. In this paper, we propose a new estimator of dispersion effects (called the ML estimator), and give the exact expression of the variance of ML estimator. We prove that the ML estimator of dispersion effect of interaction factor AB is unbiased in a class of models. Finally, a comparison is given between the ML estimator and the existing and commonly used estimators.
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117