检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安石油大学化学化工学院,陕西西安710065
出 处:《西安石油大学学报(自然科学版)》2011年第5期69-73,117,共5页Journal of Xi’an Shiyou University(Natural Science Edition)
基 金:陕西省自然科学基金项目(编号:2010JQ2003);陕西省教育厅专项科研计划项目(编号:2010JK780);陕西省"13115"科技创新工程重大科技专项(编号:2010ZDKG-46)
摘 要:分别采用多元线性回归(MLR)和径向基函数人工神经网络(RBF-ANN)建立了2个不同的持久性有机污染物飞灰-水分配系数(Ksc)的定量结构性质关系(QSPR)模型,并应用留一交叉验证方法对所建立的模型进行了检验.用所建立的模型研究了25种有机污染物的飞灰-水分配系数的定量结构性质关系.结果表明:MLR模型预测的lg Ksc均方相对误差为6.31%,全部样本lg Ksc的预测值与实验值之间决定系数(R2)为0.823 3;RBF-ANN模型预测的lgKsc均方相对误差为3.03%,决定系数为0.962 3.这说明MLR和RBF-ANN方法都能够用于建立被研究化合物Ksc的QSPR模型,RBF-ANN模型的预测准确度更高.Two quantitative structure property relationship(QSPR) models for predicting the soot-water partition coefficient(Ksc) of persistent organic pollutant(POP) were established using multivariate linear regression(MLR) and radial basis function artificial neural network(RBF-ANN) respectively.The obtained models were assessed with leave one out cross validation.The soot-water partition coefficients(Ksc) of 25 persistent organic pollutants were predicted using two models.The relative square-error and the correlation coefficient between the data predicted by using MLR model and the measured data are 6.31% and 0.823 3 separately,while those by using RBF-ANN model are 3.03% and 0.962 3 separately,which shows that two methods all can be used for establishing the soot-water partition coefficient prediction model,but the prediction accuracy of the model established by RBF-ANN is higher than that by MLR.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.179.200