25种持久性有机污染物飞灰-水分配系数的定量结构性质关系研究  被引量:1

Study on the quantitative prediction of the soot-water partition coefficient of 25 persistent organic pollutants

在线阅读下载全文

作  者:焦龙[1] 张群正[1] 

机构地区:[1]西安石油大学化学化工学院,陕西西安710065

出  处:《西安石油大学学报(自然科学版)》2011年第5期69-73,117,共5页Journal of Xi’an Shiyou University(Natural Science Edition)

基  金:陕西省自然科学基金项目(编号:2010JQ2003);陕西省教育厅专项科研计划项目(编号:2010JK780);陕西省"13115"科技创新工程重大科技专项(编号:2010ZDKG-46)

摘  要:分别采用多元线性回归(MLR)和径向基函数人工神经网络(RBF-ANN)建立了2个不同的持久性有机污染物飞灰-水分配系数(Ksc)的定量结构性质关系(QSPR)模型,并应用留一交叉验证方法对所建立的模型进行了检验.用所建立的模型研究了25种有机污染物的飞灰-水分配系数的定量结构性质关系.结果表明:MLR模型预测的lg Ksc均方相对误差为6.31%,全部样本lg Ksc的预测值与实验值之间决定系数(R2)为0.823 3;RBF-ANN模型预测的lgKsc均方相对误差为3.03%,决定系数为0.962 3.这说明MLR和RBF-ANN方法都能够用于建立被研究化合物Ksc的QSPR模型,RBF-ANN模型的预测准确度更高.Two quantitative structure property relationship(QSPR) models for predicting the soot-water partition coefficient(Ksc) of persistent organic pollutant(POP) were established using multivariate linear regression(MLR) and radial basis function artificial neural network(RBF-ANN) respectively.The obtained models were assessed with leave one out cross validation.The soot-water partition coefficients(Ksc) of 25 persistent organic pollutants were predicted using two models.The relative square-error and the correlation coefficient between the data predicted by using MLR model and the measured data are 6.31% and 0.823 3 separately,while those by using RBF-ANN model are 3.03% and 0.962 3 separately,which shows that two methods all can be used for establishing the soot-water partition coefficient prediction model,but the prediction accuracy of the model established by RBF-ANN is higher than that by MLR.

关 键 词:定量结构性质关系 飞灰-水分配系数 持久性有机污染物 径向基函数人工神经网络 多元线性回归 

分 类 号:O656[理学—分析化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象