The intensification of luminol electrochemiluminescence by metallic oxide nanoparticles  被引量:1

The intensification of luminol electrochemiluminescence by metallic oxide nanoparticles

在线阅读下载全文

作  者:GUO WenYing YAN JiLin TU YiFeng 

机构地区:[1]Institute of Analytical Chemistry, Department of Chemistry, Soochow University, Suzhou 215123, China

出  处:《Science China Chemistry》2011年第10期1640-1644,共5页中国科学(化学英文版)

基  金:supported by the National Natural Science Foundation of China (20275025 & 20675055);the Natural Science Foundation of Jiangsu Province (BK2009111);Technology Plan of Suzhou (SYJG0901)

摘  要:In this work, the intensification of luminol electrochemiluminescence (ECL) by metallic oxide nanoparticles (MONPs), as ZnO, MnO2,In2O3 and TiO2 , under alkaline condition is reported and the related mechanism is studied. It is found that all four types of those MONPs exhibit the effect toward the ECL intensification of luminol. Furthermore, the silica sol-gel film is taken to immobilize the MONPs onto the platinum electrodes. The so-obtained modified electrodes also show the enhanced ECL and better signal/noise ratio, as well improved signal stability. Finally, the ECL reagent, luminol, is immobilized together with the MONPs onto the electrode surface to perform as the ECL sensor. On resulting sensors, good linear responses are obtained toward hydrogen peroxide. The mechanism of intensification of luminol ECL by MONPs is discussed in this paper. It is proposed that the ECL intensification can be attributed to the production of reactive oxygen species, as well as the adsorption of luminol on surface of MONPs.In this work, the intensification of luminol electrochemiluminescence (ECL) by metallic oxide nanoparticles (MONPs), as ZnO, MnO2,In2O3 and TiO2 , under alkaline condition is reported and the related mechanism is studied. It is found that all four types of those MONPs exhibit the effect toward the ECL intensification of luminol. Furthermore, the silica sol-gel film is taken to immobilize the MONPs onto the platinum electrodes. The so-obtained modified electrodes also show the enhanced ECL and better signal/noise ratio, as well improved signal stability. Finally, the ECL reagent, luminol, is immobilized together with the MONPs onto the electrode surface to perform as the ECL sensor. On resulting sensors, good linear responses are obtained toward hydrogen peroxide. The mechanism of intensification of luminol ECL by MONPs is discussed in this paper. It is proposed that the ECL intensification can be attributed to the production of reactive oxygen species, as well as the adsorption of luminol on surface of MONPs.

关 键 词:ELECTROCHEMILUMINESCENCE INTENSIFICATION LUMINAL metallic oxide nanoparticles reactive oxygen species 

分 类 号:O657.1[理学—分析化学] TM862[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象