Noble Gas Diffusion Mechanism in Lunar Soil Simulant Grains:Results from ~4He^+ Implantation and Extraction Experiments  

Noble Gas Diffusion Mechanism in Lunar Soil Simulant Grains:Results from ~4He^+ Implantation and Extraction Experiments

在线阅读下载全文

作  者:付晓辉 邹永廖 郑永春 贺怀宇 欧阳自远 

机构地区:[1]National Astronomical Observatories,Chinese Academy of Sciences [2]Graduate University of Chinese Academy of Sciences [3]Institute of Geology and Geophysics,Chinese Academy of Sciences [4]Institute of Geochemistry,Chinese Academy of Sciences

出  处:《Journal of Earth Science》2011年第5期566-577,共12页地球科学学刊(英文版)

基  金:supported by the National High Technology Research and Development Program of China (863 Program)(No. 2009AA122201);the National Natural Science Foundation of China (No. 40904051)

摘  要:Experiments on ion implantation were performed in order to better characterize diffusion of noble gases in lunar soil. ^4He^+ at 50 keV with 5×10^16 ions/cm^2 was implanted into lunar simuiants and crystal ilmenite. Helium in the samples was released by stepwise heating experiments. Based on the data, we calculated the helium diffusion coefficient and activation energy. Lunar simulants dis- play similar ^4He release patterns in curve shape as lunar soil, but release temperatures are a little lower. This is probably a consequence of long-term diffusion after implantation in lunar soil grains. Variation of activation energy was identified in the Arrhenius plots of lunar simulants and Panzhihua (攀枝花) ilmenite. We conclude that noble gas release in lunar soil cannot be described as simple thermally activated volume diffusion. Variation of diffusion parameters could be attributed to physical transformation during high temperature. Radiation damage probably impedes helium diffusion. However, bubble radius growth during heating does not correlate with activation energy variation. Activation energy of Panzhihua ilmenite is 57.935 kJ/mol. The experimental results confirm that ilmenite is more retentive for noble gas than other lunar materials.Experiments on ion implantation were performed in order to better characterize diffusion of noble gases in lunar soil. ^4He^+ at 50 keV with 5×10^16 ions/cm^2 was implanted into lunar simuiants and crystal ilmenite. Helium in the samples was released by stepwise heating experiments. Based on the data, we calculated the helium diffusion coefficient and activation energy. Lunar simulants dis- play similar ^4He release patterns in curve shape as lunar soil, but release temperatures are a little lower. This is probably a consequence of long-term diffusion after implantation in lunar soil grains. Variation of activation energy was identified in the Arrhenius plots of lunar simulants and Panzhihua (攀枝花) ilmenite. We conclude that noble gas release in lunar soil cannot be described as simple thermally activated volume diffusion. Variation of diffusion parameters could be attributed to physical transformation during high temperature. Radiation damage probably impedes helium diffusion. However, bubble radius growth during heating does not correlate with activation energy variation. Activation energy of Panzhihua ilmenite is 57.935 kJ/mol. The experimental results confirm that ilmenite is more retentive for noble gas than other lunar materials.

关 键 词:noble gas solar wind DIFFUSION lunar soil the Moon. 

分 类 号:P184[天文地球—天文学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象