检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨六省
机构地区:[1]长安师范学校,陕西西安710100
出 处:《宝鸡文理学院学报(自然科学版)》2011年第3期25-29,共5页Journal of Baoji University of Arts and Sciences(Natural Science Edition)
摘 要:目的讨论意外考试悖论的自然语言版本、蒙塔古-卡普兰版本以及知道者悖论诸论证的有效性问题。方法以一条叫做逻辑先后律的思维原则为工具,对所论问题进行剖析。结果 (发现)①对第二天是否考试的判断环节的缺失,使问题无法讨论及论证无效;②意外考试悖论的自然语言版本中,不能推出"最后一天不可能考试"的结论;③意外考试悖论的蒙塔古-卡普兰版本中,合理假定(C4)非恒真;④知道者悖论的推理前提,是一个不合逻辑的定义。结论上述三个悖论的论证均是无效的。Aim To discuss the effectiveness of the justification of the surprise examination paradox which is both in natural language version and R.Montague-D.Kaplan version,and also of the knower paradox.Methods With a thought principle called the law of logic order,we analyze the aforesaid problems.Results ① The absence of judgment on whether examination will be conducted on the next day disables problem discussion and invalidates the demonstration.② In the natural language version of surprise examination paradox,one cannot conclude that it is impossible for the last day to be the examination day.③ In R.Montague-D.Kaplan version of surprise examination paradox,the reasonable assumption(C4) is not constantly true.④(One of) the premise(s) of the surprise examination paradox is an illogical definition.Conclusion The justification of the three said paradoxes is invalid.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249