机构地区:[1]State Key Laboratory of Fluid Power Transmission and Control,Zhejiang University [2]State Key Laboratory of Mechanical Transmission,Chongqing University
出 处:《Journal of Central South University》2011年第5期1554-1562,共9页中南大学学报(英文版)
基 金:Project(50375139) supported by the National Natural Science Foundation of China;Project(NCET-04-0545) supported by the New Century Excellent Talent Plan of the Ministry of Education of China
摘 要:The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system.To solve this problem,cascade control method with an inner/outer-loop control structure is used,which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator.Furthermore,a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator.The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal.Then,with the feedback of both position error and synchronization error,the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero.Moreover,the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.The synchronous tracking control problem of a hydraulic parallel manipulator with six degrees of freedom (DOF) is complicated since the inclusion of hydraulic elements increases the order of the system. To solve this problem, cascade control method with an inner/outer-loop control structure is used, which masks the hydraulic dynamics with the inner-loop so that the designed controller takes into account of both the mechanical dynamics and the hydraulic dynamics of the manipulator. Furthermore, a cross-coupling control approach is introduced to the synchronous tracking control of the manipulator. The position synchronization error is developed by considering motion synchronization between each actuator joint and its adjacent ones based on the synchronous goal. Then, with the feedback of both position error and synchronization error, the tracking is proven to guarantee that both the position errors and synchronization errors asymptotically converge to zero. Moreover, the effectiveness of the proposed approach is verified by the experimental results performed with a 6-DOF hydraulic parallel manipulator.
关 键 词:synchronization error CROSS-COUPLING cascade control hydraulic dynamics parallel manipulator degree of freedom
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...