检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王炳雪[1]
机构地区:[1]上海财经大学信息管理与工程学院,上海200433
出 处:《计算机工程与应用》2011年第28期128-130,231,共4页Computer Engineering and Applications
基 金:上海财经大学211工程三期资助
摘 要:目前时态序列挖掘方法大多都是以一种自然的方式对序列分割、离散处理等,从而使离散化结果很大程度依赖于外部的人为分割变量。为了使离散化结果更强地依赖于原始数据,应用模糊聚类方法,将连续时态演化序列转变为模糊时态演化序列,应用模糊时态演化片段支持度评定频繁模糊时态演化模式,用隶属度计算关联规则的支持度和可信度,使这两个重要指标计算更为精确。给出了频繁模糊模式集的生成算法和复杂度。实际算例显示了方法的有效性。Most existing temporal sequence mining methods depend on partitioning and discretization in a natural way, which brings on that the symbols of the alphabet are usually chosen externally and imposed by the users.In order to reduce the randomicity, the original temporal sequence is transformed into fuzzy form by fuzzy clustering, and then frequent fuzzy temporal evolution patterns are assessed with support and confidence measure.Rule's support and confidence are calculated from membership and each sample does not arbitrarily support a single symbol so as to make the two important measures more exact and actual.An apriori algorithm and its complexity for discovering frequent fuzzy itemsets are present.The practical cal- culation shows that the mining of temporal sequence evolution patterns on commodity futures data is meaningful and resultful.
分 类 号:TP391.77[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117